Один французский рыцарь, де Мере, был страстным игроком в кости. Он всячески старался разбогатеть и придумывал для этого разные усложненные правила.
Он, в частности, придумал такие правила: бросают 4 кости и он бьется об заклад, что хотя бы на одной выпадет 6. Он считал, что в большей части случаев он останется в выигрыше. Чтобы подтвердить это, он обратился к своему старому знакомому – Блезу Паскалю с просьбой рассчитать, какова вероятность выигрыша в этой игре.
Приведем расчет Паскаля.
При каждом отдельном бросании вероятность события A = «выпала шестерка» =
. Вероятность события B = «не выпала шестерка» = . Кубики не зависят друг от друга, следовательно, по формулевероятность того, что шестерка не выпадет два раза подряд, составляет
Точно так же показывается, что при трехкратном бросании вероятность невыпадения 6 составляет
А при четырехкратном –
А
, следовательно, вероятность выигрыша . Значит, при каждой игре больше половины шансов было за то, что де Мере выиграет; при многократном повторении игры он наверняка оставался в выигрыше.Резонно поставить вопрос, какой должна быть вероятность события, чтобы можно было считать его достоверным? Известно, что примерно 5% назначенных концертов отменяется, однако это не мешает нам покупать билеты. Но если бы 5% самолетов разбивались, то вряд ли бы кто-нибудь стал пользоваться воздушным транспортом.
Для того, чтобы в условиях мирного времени не рисковать жизнью, то вероятность неблагоприятного исхода должна быть, по-видимому, не больше 0,0001. Разные люди по-разному относятся к риску, но очевидно, что даже самые осторожные легко пойдут на риск, если вероятность неблагоприятного исхода составляет 10-5. Например, вероятность попасть под машину в большом городе 10-7. Так что можно предположить, что событие с вероятностью неблагоприятного исхода 10-7 можно считать достоверным, однако транспортные происшествия случаются каждый день.
Так же можно определить вероятность невозможного события, например «чуда Бореля» (Эмиль Борель – математик, автор многих работ по Теории) – того, что обезьяна, наугад ударяя пальцами по клавиатуре, напечатает какое-нибудь законченное произведение, например, «Горе от ума» Грибоедова. Это не невозможное событие, хотя вероятность его очень мала, примерно 10-2600. С такой же вероятностью на огне может замерзнуть чайник (термодинамика, кстати, не отрицает возможности такого явления).
Но все-таки вероятность невозможного события большинство ученых оценивает как 10-16.
4. Метод «Монте-Карло».
определение. Метод Монте-Карло – это численный метод решения математических задач при помощи моделирования случайных величин.
Датой рождения метода принято считать 1949 г., когда появилась в свет статья «TheMonteCarloMethod». Создатели метода – американские математики Дж. Неймана и С. Улама.
Теоретическая основа метода была известно давно, однако только с появлением компьютеров он нашел широкое применение, т.к. моделировать случайные величины вручную – трудоемкое занятие.
Само название метода – «Монте-Карло» происходит от названия города в княжестве Монако, знаменитого своими игорными домами. Дело в том, что простейшим прибором для моделирования случайных величин является… рулетка. Наиболее часто задаваемый вопрос, естественно: «Помогает ли метод выигрывать в рулетку». Нет, к сожалению, не помогает.
Теперь перейдем непосредственно к математике. Чтобы было понятно, о чем идет речь, приведем простейший пример применения метода.
Пример 1.
Предположим, нам надо вычислить площадь фигуры, изображенной на рисунке. Предположим, что она расположена внутри единичного квадрата.
Выберем внутри единичного квадрата N случайных точек. Обозначим через N’ число точек, попавших внутрь этой фигуры. Тогда площадь этой фигуры будет приближенно равна
.На рисунке всего 30 точек. 12 из них попали в фигуру,
, в то время как истинная площадь фигуры равна 0,48.Особенности Метода.
Первая особенность – простота вычислительного алгоритма. Как правило, составляется программа для проведения одного случайного испытания, и повторять его N раз. Поэтому Метод часто называют методом статистических испытаний
Вторая особенность – погрешность, как правило, пропорциональна
, где D = const, N – число испытаний.Разные задачи можно решать разными вариантами Метода, которых, кстати, очень много. Для каждого варианта – свое значение D и, соответственно, свое значение погрешности.
С помощью Метода можно смоделировать любой процесс, протекание которого связано со случайными величинами. Так же можно искусственно придумать вероятностную модель для задач, не связанных со случайностью.
Для получения случайных чисел существуют специальные таблицы, которыми особенно удобно пользоваться на компьютерах: каждый раз мы просто берем очередное число и используем его как случайное. Но составить такую таблицу не так просто, как может показаться. Существуют специальные тесты, чтобы проверить правильность случайной последовательности.
Практическое значение Метода очень велико. С его помощью, например, можно рассчитать надежность любого изделия, или рассчитать траекторию прохождения нейтронов сквозь пластину или положение электрона в данный момент времени и т.д.
5. Несколько слов об истории развития Теории.
В XVII столетии Теорией занимались такие выдающиеся математики, как Паскаль, Ферма, Гюйгенс. При этом первые вклады в Теорию были сделаны в связи с изучением азартных игр.
Однако уже в конце XVII в. начали пользоваться Теорией при страховании кораблей, т.е. начали подсчитывать, сколько шансов на то, что корабль вернется в порт невредимым, не будет потоплен бурей, что груз не подмокнет, что он не будет захвачен пиратами и т.д. Такой расчет позволял определять, какую страховую сумму следует выплачивать и какой страховой взнос брать, чтобы это было выгодно для компании.
В первой половине XVIII в. для теории много сделал Яков Бернулли – член Российской Академии наук. Следует отметить труды С. Лапласа, С. Пуассона, К. Гаусса.
При всем при том, в течение второй половины XVIII в. Теория в известном смысле «топталась на месте». В то время была еще не ясна связь между различными явлениями в жизни и наукой о массовых явлениях. В середине XIX в. большой сдвиг в развитии Теории сделал русский математик П. Чебышев. Внесли большой вклад Марков, Ляпунов, Бернштейн, Колмогоров.
Теория сыграла большую практическую роль во Второй Мировой войне. Приведем пример из военной области. Понятно, что очень трудно сбить самолет одним выстрелом из винтовки. Ведь стрелок должен не только попасть в самолет, но поразить самое уязвимое место, например топливный бак. Поэтому вероятность того, что один стрелок собьет винтовкой самолет, ничтожна. Совсем другое дело – массовый обстрел. Если предположить, что вероятность сбить самолет одной винтовкой равна 0,004; соответственно, вероятность промаха – 0,996. Теперь предположим, что стреляют 500 стрелков; как мы доказали выше, вероятность промаха составляет
Таким образом, вероятность сбить самолет одним залпом равна 0,86. А если есть возможность произвести 2 – 3 залпа, то шансы у самолета уцелеть близки к нулю.
Так же Теория позволяла определять районы, в которых имели смысл поиски самолетов и подводных лодок или указывать пути, чтобы избежать встречи с ними. Типичной здесь является задача о том, как выгоднее вести караваны торговых судов по океану, в котором действуют вражеские подлодки. Если организовывать караваны из большого числа судов, то можно будет обойтись меньшим числом рейдов, но и возможные потери при встрече с флотом врага будут больше. Теория помогла рассчитать оптимальные размеры караванов и частоту их отправления. Задач такого рода возникало немало, поэтому при штабах организовывались специальные группы, занимающиеся расчетами вероятностей. После войны подобные расчеты стали применяться к хозяйственным вопросам мирного времени. Они составляли содержание нового большого направления, названного исследованием операций, которое оформляется в целую науку.
Список литературы
И. Зайдель. «Ошибки измерений физических величин»
О. С. Ивашев-Мусатов. «Теория вероятностей и математическая статистика»
Э. Борель. «Вероятность и достоверность»
И. М. Соболь. «Метод Монте-Карло»