Смекни!
smekni.com

Числа в пространстве (стр. 3 из 5)

Однако в условиях нашей задачи нет подходящего конкретного эталона, зато есть периодический процесс как таковой, ведь вращение - это модель любого периодического процесса. То есть вращение САМО ПО СЕБЕ – это периодический процесс в чистом виде, причем мерой его для данной системы отсчета является уже заданная, постоянная единица пространства – длина траектории вращения, окружности, радиуса.

Теперь представим бесконечное множество одинаковых вращающихся систем ("колес"), которые характеризуются одинаковыми мерами [м], оси которых располагаются на прямой, перпендикулярно к ней. Наше рассмотрение чисто классическое, ведь мы хотим вывести классическую характеристику вращения (которая только в неклассическом случае псевдоевклидовой плоскости проявит себя как предельная константа S), поэтому нет ничего удивительного, что мера расстояния будет общей для всех систем (радиус "колеса"). Эта мера в нашем случае будет играть ту же роль, что и время для множества инерциальных систем. "Одновременность" здесь будет выступать, как "синхронизация" - положение, когда радиусы "колес" лежат на общей прямой, через точки которой проходят оси.

Вот это множество вращающихся систем, расположенных на прямой так, что все они крутятся синхронно - то есть их радиусы ложатся на одну прямую одновременно ("сборка" прямой из единичных отрезков - это и есть "одновременность"). Абсолютно все они вращаются, но мы не можем определить частоту их вращения, поскольку НЕТ МЕРЫ ВРЕМЕНИ, относительно которой можно было бы задать частоту. Иными словами, с традиционной точки зрения вращающееся "колесо", выбранное за систему отсчета, может иметь любую скорость вращения, зато относительно выбранной вращение другой может быть строго определено. Понятно, что допустимой окажется и обратная операция: определение вращения системы отсчета относительно той, чье вращение измерялось первоначально.

Рис. 2

Мы только что отметили, что в нашей модели нет меры времени. Зато есть другая мера - один полный оборот и длина единичного радиуса, который этот оборот совершает. Зафиксировать оборот для системы отсчета не составит труда: ведь одна система может определять свое собственное вращение относительно другой. Пусть в выбранной модели моментом отсчета для некоторой вращающейся системы является миг синхронизации, когда "совпадают" ("сходятся", "лежат напротив друг друга", "метятся одной отметкой" и т.п.) точки окончания радиусов соседних с ней "колес", оказавшиеся на базовой прямой. Если вращение продолжится, эти точки рано или поздно вновь должны совпасть. (Выражение "рано или поздно" показывает, что никакой определенной частоты вращения [обороты в секунду] - мы наперед задать не вправе, задается только необходимость будущего совпадения.)

Первое же совпадение "меток", которое будет зафиксировано в выбранной системе отсчета, означает, что система совершила один оборот. Такой оборот означает: "пройдена мера расстояния". Для системы отсчета это и есть ее период. Не важно, что соседняя система за это же время могла совершить сколь угодно много оборотов, важно то, что "метки" совпали - то есть радиус системы отсчета вновь лежит на базовой прямой. Теперь количеством этих оборотов можно измерять и вращение любой другой системе. Легко уяснить, что в этой модели независимой переменной является именно число оборотов: "метры накручиваются" совершенно так же неотвратимо и постоянно, как текут секунды времени в классической модели поступательного движения. Теперь в системе отсчета легко измерять скорость вращения любой другой системы вращения: достаточно посчитать число оборотов, сделанных на наших "часах" (система отсчета – «срелка» и соседняя, выбранная за «циферблат») до того, как с измеряемой системой отсчета возник момент синхронизации. Это число оборотов будет количеством условных единиц времени – условных секунд, ведь времени, классического, текущего само по себе, здесь нет. Есть только отсчет оборотов собственной стрелки - вращающейся системы, сделавшей один свой собственный оборот, дойдя до отметки на циферблате - на соседнем "колесе". Так идет "накручивание" условных метров – длины окружности, постоянной в данной системе для заданного радиуса (Мы не случайно именуем вращающуюся систему "колесо", поскольку определение вращения здесь может быть только локальным.)

Казалось бы, мы вправе счесть, что метка, с которой наступило совпадение - это метка на колесе, которое "на самом деле" покоится, то есть его радиус все время совпадает с базовой прямой. Но, достаточно нам это предположить, как схема рушится: ведь тогда вся наша базовая прямая, образуемая совпадающими радиусами, должна вращаться вокруг такого "покоящегося колеса" - вместе со всеми лежащими на ней "колесами" и системой отсчета в придачу! Инерциальной системе в нашей модели места нет, сама базовая прямая - это не общая для всех неподвижная система отсчета, а нечто возникающее из условия "синхронизации" (аналогично в классической модели поступательного движения появляется общая, единая для всех инерциальных систем ось абсолютного времени). Значит нам, действительно, удалось избавиться от инерциальных (не вращающихся) систем, удалось найти модель, когда приходится рассматривать вращение только относительно вращений. Так выясняется, что в классической стандартной модели на самом деле сравнивались не вращения, а мгновенные скорости точек концов радиусов, каждая из которых уже заранее задавалась как прямолинейная поступательная, относительно общей для них неподвижной системы отсчета.

Таким образом, для того, чтобы можно было сравнивать между собой ТОЛЬКО ВРАЩАЮЩИЕСЯ системы, мы должны располагать их осях вращения перпендикулярных к базовой прямой, с которой совпадают вращающиеся радиусы. В ином случае, измеряя относительное вращение, мы всегда будем вынуждены считать систему отсчета инерциальной, а в результате получать определение мгновенной поступательной скорости. Если мы в физике хотим проводить четкое различие между инерциальными и вращающимися системами отсчета, иной схемы для сравнения вращений, нежели только что предложенная, придумать нельзя. Более того, стандартная схема, где можно вводить покой вращающейся системы отсчета, непригодна еще и потому, что в ней ход времени - базовый периодический процесс - вводится аксиоматически. Молчаливо предполагается, что этот процесс не входит в множество рассматриваемых вращений. Легко догадаться, что такой базовый периодический процесс-вращение - это элемент того ортогонального множества вращений, которое мы сейчас рассматриваем.

Что же мы получим, если в рамках нашего мысленного эксперимента будем строить шкалу относительных вращений? Мы должны придти к выводам, что единицу времени, отсчитываемую "часами-колесом", надо определять, исходя из того - сколько раз было зафиксировано совпадение точек на часах. Чем больше оборотов будет отмечено по нашим "часам" до момента, когда совпадение произойдет - тем большее значение для скорости вращения будет зафиксировано.

Допустим, что до момента фиксации совпадения меток с измеряемым колесом было отсчитано N оборотов "собственного времени", тогда измеряемому колесу будет приписана мера вращения в N секунд за один оборот. Если вспомнить, что оборот - это "накручивание метров", то мерой измерения скорости вращения станет [с/м]. Что же будет происходить, при переходе от одной системы отсчета к другой? Теперь "часами" для новой системы отсчета становится та, которая раньше была системой отсчета. Точно так же, как в классической модели определения прямолинейных поступательных скоростей осуществляется переход из системы отсчета в систему, чья скорость измеряется.

Рис. 3.

Легко посчитать, каким образом будут складываться вращения. Допустим, для простоты, что система отсчета B зафиксировала совпадение "меток" с измеряемой системой C за два собственных оборота, за 2 условные секунды, - тогда измеряемой системе приписана скорость в 2[с/м]. Всякий раз, по "часам" отсчитывается два оборота, прежде чем измеряемая система сделает один. (Образно выражаясь, длина "суток" системы C - один ее оборот – это 2 оборота стрелки на наших часах, где системы A и B - это циферблат и часовая стрелка. Понятно, почему люди измеряют время на Земле именно ТАК.)

Теперь пусть измеряемая система, ставшая новой системой отсчета, точно также зафиксирует такую же скорость вращения у новой системы D. Но это означает, что в первоначальной системе отсчета B скорость этой последней будет измерена уже как 4 оборота до первого совпадения меток! То есть 2[с/м]+2[с/м]=4[с/м] - в полном соответствии с арифметическим законом сложения скоростей. Фокус в том, что собственная условная секунда в системе C измеряется по отношению к B, которая, конечно, до этого совпадения уже успела сделать один собственный оборот. Но в таком "фокусе" нет ничего удивительного, ведь никакого абсолютного времени нет, есть только собственные обороты - условные секунды - которые возникают через определение совпадений меток системы отсчета с метками той, относительно которой начался отсчет оборотов.