Смекни!
smekni.com

Числа в пространстве (стр. 4 из 5)

А теперь отметим главную особенность нашей модели. Если мы строим относительность вращений по аналогии с относительностью для поступательного движения, то мы должны предположить, что две системы вращения, A и B, которые сравнивались первоначально, должны приписать друг другу равные скорости вращения. Но у нас этого вроде бы нет: мы говорим только о совпадении меток, которое позволяет системе B зафиксировать свой полный оборот. Если мыслить по аналогии, B должна тогда приписать системе A также только один оборот, но мы начали с того, что заявили: эта система A может "на самом деле" совершить и большее число, главное – чтобы метки совпали. Кроме того, читатель, наверное, уже обратил внимание, что измеряемой системе я сразу приписал скорость в 2[с/м], но, если мыслить по аналогии, мы должны были бы рассмотреть системы A, B и C, так, чтобы вращения A и C относительно центральной системы отсчета B были единичны и равны между собой.

Вспомним, как мы измеряем относительные скорости для поступательного движения: если скорость точки B относительно системы отсчета A задается единичной, а в системе B имеется точка C, движущаяся с единичной скоростью, то симметрия такова, что относительно точки B скорости A и C равны.

¬ A · B· · C ®

Рис. 4.

Да, они равны по модулю, но ПРОТИВОПОЛОЖНО НАПРАВЛЕНЫ. Тогда аналогом этого симметричного случая в нашей модели станет следующая ситуация:

Рис. 5

Относительно вращающейся системы B вращательные скорости систем A и C будут единичны, но противоположно направлены: ведь синхронность совпадений меток не свидетельствует о направленности вращения! Возникает проблема: пусть у A и C скорости противоположно направлены, но в какую же сторону тогда крутится "колесо" B? Вопрос чрезвычайно интересный. Получается, что "колесу" можно приписать вращение в любую сторону! Это делает нашу модель полностью аналогичной классической схеме относительности поступательного движения. В классической схеме системе отсчета приписывался покой – нуль поступательной скорости. Нулевая скорость само по себе, безотносительно к чему либо. Аналогом этого "абсолютного самого по себе покоя" в нашей модели оказывается неопределенность направления вращения. Именно неопределенность, ведь определенность наступает только тогда, когда вводится четвертая система вращения D, теперь для выполнения правила арифметического сложения скоростей вращения система B будет иметь направление вращения в ту же сторону, что и C и D. Легко убедиться, что эта неопределенность будет возникать всякий раз, когда мы переходим в новую систему отсчета.

Смысл такой неопределенности легко понять: система ВРАЩАЕТСЯ, но направления вращений меняются в зависимости от задаваемой системы отношений. Точно также для инерциальных систем меняются местами покой и движение, в зависимости от того, что считается системой отсчета.)*

Например, в нашем случае, когда скорости C (относительно B) и D (относительно C) определяются по модулю как 2[с/м], переход из системы B в систему C приводит к тому, что скорость B относительно C также станет равной 2[м/с], но по отношению к D противоположно направленной. Однако, если ранее мы спокойно задавали направленность вращения C (в ту же сторону, что и D), то теперь ее направление вращения оказывается неопределенным. Я полагаю, что такие выводы отнюдь не свидетельствуют о порочности и противоречивости анализируемой модели, наоборот они указывают, как на базе совершенно классических представлений мы находим основания для представлений, принятых в неклассической физике. (А классическая интерпретация может быть, в частности, связана с представлением систем А и С в качестве сечений тора, который в общем случае может быть вращающимся. В связи с этим, напомню, что мы здесь рассматриваем плоский случай.)

Осталось сказать немного. Как уже ясно, при переходе от одной системы отсчета к другой идет арифметическое сложение величины [с/м] - величины скорости, определенной для вращения, понятого в качестве фундаментальной формы движения, - идет в сторону увеличения, то есть стремится к бесконечности. Точно также и поступательные скорости [м/с] в классической механике могут быть неограниченно увеличиваемы числом переходов от одной системы к последующей. Однако по смыслу ТАК ПОНИМАЕМОЙ скорости вращения, увеличение количества [с/м] - это уменьшение числа оборотов, то есть ничто иное, как замедление вращения. Если классическая кинематика поступательного движения в современной физике заменена релятивистской, где значение скорости прямолинейного распространения сигнала оказалось ограниченно верхним пределом C, то наша модель позволяет столь же последовательно ввести псевдоевклидовый континуум, где появляется константа S с размерностью [с/м], которая ограничивает возможное замедление скорости вращения. Перефразируя вышеприведенные слова Вольфганга Паули, можно сказать: "Введем, как обычно, вещественную координату t0 для времени и необычные мнимые координаты t1=iSx1, t2=jSx2 t3=kSx3 для измерений пространства, и рассмотрим преобразования чем-то похожие на преобразования Лоренца..."

* Интересно отметить, что Дж.В.Нарликр в теории конформной гравитации, рассматривая в совершенно пустой вселенной одинокую материальную точку (то есть, для нее отсутствует система отсчета), приходит к выводу, что ее состояние движения - это не нуль скорости, а неопределенность. (Дж.В.Нарликар, "Инерция и космология в теории относительности", в сб. "Астрофизика, кванты и теория относительности", М.: "Мир", 1982, с. 504. Это сборник статей к столетию А.Эйнштейна, выпущенный в Италии - "Astrofisica e cosmologia, gravitazione, quanti e relativita", Firenze, 1979.)

III. Непрерывный континуум и числовые многообразия

В квартернионном время-пространстве появляется свойство некоммутативности. Это заставляет задуматься: а является ли полученная математическая структура тем, что мы обычно называем континуумом? Ведь здесь перед нами алгебра, а не геометрия.

Хочу напомнить, что еще в XIX веке Уильям Гамильтон сформулировал перспективную задачу: если есть геометрия как наука о пустом пространстве, то - просто по аналогии - можно представить некую науку о "чистом времени". Более того, он предположил, что алгебра - это и есть такая наука, просто мы не улавливаем в ней скрытую временную специфику, не понимаем - как НА САМОМ ДЕЛЕ в алгебраических уравнениях воплощаются внутренние свойства ВРЕМЕНИ. Открытие некоммутативной алгебры Гамильтоном произошло в результате его попыток смоделировать время в "Теории алгебраических пар чисел", и остается только поражаться интуиции этого великого математика.

Тем не менее, переход от непрерывной континуальности к рядам чисел выглядит проблематично. Здесь подспудно присутствует и некая философская пара-догма: если геометрические отношения воспринимаются как нечто объективно заданное метрикой окружающего Универсума, то числа трактуются как некий продукт нашего ума, склонного к абстракциям и комбинаторике. (По известному афоризму Л.Кронекера: "Натуральные числа создал Бог, а остальные - дело рук человеческих".) Если для физиков квантовая прерывность обоснована ссылками на результаты экспериментов, то для математики никаких "числовых квантов" не существует - любая значимая величина бесконечно делима. Числовая дискретность растворяется в непрерывности, бесконечно малое обращается в нуль.

Странная ситуация сложилась: классический математический анализ формировался на основе классической механики, в современной физике таковая уже является делом прошлого, однако мы все еще строим математические модели на базе представлений стандартного математического анализа и стандартного понимания предела.

Ричард Фейнман в своей книге "Характер физических законов" пишет: "Теория, согласно которой пространство непрерывно, мне кажется неверной, потому что она приводит к бесконечно большим величинам и другим трудностям. Кроме того, она не дает ответа на вопрос о том, чем определяются размеры всех частиц. Я сильно подозреваю, что простые представления геометрии, распространенные на очень маленькие участки пространства, неверны. " (Richard Feynman, The Character of Physical Law. Русский перевод: Р.Фейнман. Характер физических законов. М.: "Мир", 1968, с. 184.)

А вот какое примечательное суждение высказано в известной книге Д.Гильберта и П.Барнайся: "На самом деле мы вовсе не обязаны считать, что математическое пространственно-временное представление о движении является физически осмысленным также и в случаях произвольно малых пространственных и временных интервалов. Более того, у нас имеются все основания предполагать, что, стремясь иметь дело с достаточно простыми понятиями, эта математическая модель экстраполирует факты, взятые из определенной области опыта, а именно из области движений в пределах того порядка величин, который еще доступен нашему наблюдению... Подобно тому, как при неограниченном пространственном дроблении вода перестает быть водой, при неограниченном дроблении движения также возникает нечто такое, что едва ли может быть охарактеризовано как движение" (Гильберт Д., Барнайс П., "Основания математики. Логические исчисления и формализация арифметики", М., "Наука", 1979, с. 41.).

Прошу прощения за столь обширное цитирование, оно понадобилось, чтобы обрисовать предпосылки важной проблемы:

1. Существует принципиальное расхождение между современными физическими представлениями о движении и классическими понятиями анализа.

2. Допустима мысль о "математической модели", подходящей для описания микро движения в пределах "недоступного наблюдению порядка величин".