Смекни!
smekni.com

Квантовая теория эффекта Допплера и абсолютное пространство (стр. 1 из 3)

Недосекин Юрий Андреевич

Аннотация

При помощи законов сохранения энергии и импульса и релятивистского соотношения между энергией и импульсом частицы получены формулы для эффекта Допплера при произвольном расположении источника и приемника излучения. Приведены аргументы в пользу существования абсолютного пространства и абсолютной системы отсчета. Предложено провести опыт Майкельсона-Морли в новых условиях, позволяющих обнаружить “эфирный ветер”.

Закон изменения частоты излучения движущегося источника в релятивистской теории выводится при преобразовании волнового 4-вектора [1] и от классической теории отличается наличием поперечного допплер-эффекта, связанного с замедлением временных процессов в движущихся телах. Экспериментальная проверка продольного релятивистского закона была осуществлена Айвсом [2], результаты опытов которого неправомерно считают доказательством поперечного допплер-эффекта. На необходимость осуществления подобных опытов указывается в работе [3], в которой по теории автора, основанной на предположении абсолютности пространства-времени, утверждается отсутствие поперечного допплер-эффекта и предлагается опыт по его проверке. Достаточно убедительных экспериментальных результатов в настоящее время не имеется, поэтому постановка вопроса об опытном подтверждении поперечного допплер-эффекта является вполне уместной.

Закон изменения частоты излучения движущегося источника можно получить при помощи законов сохранения энергии и импульса и релятивистского равенства между энергией и импульсом в элементарных процессах излучения фотонов движущимися частицами. Таким же образом можно получить и закон изменения частоты излучения, воспринимаемой движущимся приемником. Шредингер [4] вывел этот закон на основе законов сохранения энергии и импульса при излучении источником световых квантов, предположив изменение скорости источника (атома) за счет отдачи фотона равным нулю. Однако формула допплеровского смещения частоты этим методом может быть получена точно, что в данной работе и предлагается. С признанием справедливости релятивистских соотношений между массой и энергией частицы, энергией и импульсом фотона, предположение об абсолютности пространства-времени не приводит к нулевому результату поперечного допплер-эффекта, при выводе которого в настоящей работе эффект замедления времени в движущихся телах не используется. Отсюда следует, что утверждение о равенстве нулю величины поперечного допплер-эффекта [3] является неверным, хотя предлагаемый автором эксперимент следует провести как можно точнее. Всякое отличие результатов эксперимента от формулы, выражающей закон Допплера, можно будет объяснить рядом причин, имеющих фундаментальное происхождение. Поперечный допплер-эффект в специальной теории относительности (СТО) объясняется замедлением временных процессов в движущихся телах. Вывод формулы этого же эффекта получается без всякого предположения о замедлении времени, основываясь лишь на законах сохранения энергии и импульса при излучении частицей фотона. Возникает вопрос – совместим ли эффект замедления времени в движущихся телах с величиной поперечного допплер-эффекта, полученного с помощью законов сохранения энергии и импульса? Есть это замедление или нет, оно при выводе формулы эффекта Допплера в данной работе не используется, поэтому можно считать, что на основе существования поперечного допплер-эффекта нельзя однозначно утверждать о замедлении временных процессов в движущихся телах.

Обозначения

И – источник излучения фотона (атом, частица);

П – приемник (атом, частица), воспринимающий энергию фотона, излученного источником;

– массы покоя И или П до и после их взаимодействия с фотоном;

– полные энергии и импульсы И или П соответственно до и после их взаимодействия с фотоном;

– импульс фотона, излученного И;

– скорости И или П до и после их взаимодействия с фотоном.

– энергия возбуждения И;

– энергия излучения И;

– энергия возбуждения (поглощения) П.

1. Поглощение фотона приемником

1) Неподвижные приемник и источник. Неподвижный И излучает энергию

, которую неподвижный П поглощает как . Этот процесс изображен на рис. 1.

Запишем уравнения законов сохранения энергии и импульса для П

(1)

(2)

Исключая из этих уравнений

, получим

(3)

Энергия, поглощенная П, равна

Выразив отсюда
и подставив в (3), получим

(4)

где

<< 1 .

2) Приемник движется, источник покоится. Неподвижный И излучает энергию

, которую движущийся П поглощает как  . На рис. 2 и рис. 3 изображены процессы взаимодействия фотона с П при его движении к И и от И соответственно.

Для обоих процессов, изображенных на рис. 2 и рис. 3, запишем общие уравнения законов сохранения энергии и импульса и релятивистские равенства между энергией и импульсом для П

(5)

(6)

(7)

(8)

Подставив

из (5) в (8) и учитывая (7), получим
где m – полная масса П до поглощения им энергии
. Обе части равенства (6) возведем в квадрат, откуда выразим
Исключив
из последних выражений, запишем

(9)

где  – угол между векторами

,
Энергия возбуждения (поглощения) П равна
. Выразим отсюда
и подставим в (9), в результате получим

(10)

где

<< 1 . Заменяя в формуле (10)  и  на другие обозначения, получим:

для процесса (рис. 2)

(11)

для процесса (рис. 3)

(12)

Формулы (11) и (12), если в них символы

заменить на обозначения частот, совпадают с соответствующими формулами, полученными в СТО [5], с точностью до малой величины  . Современные измерительные средства не позволяют обнаружить влияние члена  на смещение частоты излучения, воспринимаемой П.

2. Излучение фотона источником

1) Неподвижные источник и приемник. Неподвижный И возбужден до энергии

излучает энергию
. Этот процесс изображен на рис. 4.

Запишем законы сохранения энергии и импульса для И

(13)

(14)

Энергия возбуждения И равна

. Выразив отсюда
и подставив в (13) и (14), исключая в них  = v /c, получим энергию излучения И