Смекни!
smekni.com

Тезис Гьоделя. Теорема Черча (стр. 3 из 3)

Во-вторых, теорема Гёделя о неполноте применима не только к формальным системам, сформулированным в языке арифметики (т.е. говорящим о натуральных числах), но также к бесчисленному множеству других формальных систем, от которых требуется только, чтобы они были "подходящими" в нужном техническом смысле; главное требование здесь — чтобы они были не менее мощными, чем теория T в языке арифметики, для которой мы собственно доказываем теорему Гёделя, а это требование обеспечивается возможностью интерпретировать T в такой новой теории. Например, формальная система ZFC, используемая для формализации теории множеств, а вместе с ней и практически всей современной математики, намного более мощна, чем какая-нибудь простенькая арифметическая T, для которой мы доказали теорему Гёделя этот факт можно строго описать (предъявив интерпретацию, т.е. способ перевести утверждения из языка T в утверждения языка ZFC, и показав, что ZFC тогда доказывает "перевод" всех аксиом T) и из него тогда будет следовать, что и ZFC тоже неполна, т.е. в ней тоже есть какое-то гёделево утверждение G, которое нельзя ни доказать, ни опровергнуть.

Проблема, однако, в том, что в отличие от арифметических формальных систем, для утверждений которых у нас всегда есть удобный и обычный способ определить их истинность (посмотреть на то, верны ли они как утверждения о натуральных числах), для других формальных систем, таких, скажем, как ZFC, понятие истинности вообще не определено или определено очень плохо. Для них первая и вторая версии теоремы Гёделя оказываются неподходящими именно потому, что эти версии опираются на корректность данной системы и на существование определённого понятия истинности утверждений. Подходит только третья, чисто синтаксическая версия.

Список литературы

1. www.intuit.ru

2. www.proza.ru

3. www.referat.ru