Смекни!
smekni.com

Головка рубинового лазера с термоохлаждением (стр. 2 из 3)

где А — тепловой эквивалент работы; w1, w2,—угловые скорости потока.

Охладившийся центральный поток газа выходит из вихревой трубы через отверстие в диафрагме, более нагретые внешние слои отводятся наружу через вентиль.

Движение потоков может осуществляться как в противоположных, так и в одном направлении.


Вихревой воздухохолодильник дает возможность создать систему охлаждения с минимальными массой и габаритами. При этом эффективность охлаждения по сравнению с обычными газовыми системами возрастает в несколько раз. Как уже говорилось, принцип охлаждения активного вещества в этой системе основан на образовании воздушного вихря, движущегося с тангенциальным ускорением в сопло, имеющее форму спирали Архимеда (сопло-улитка) (рис. 2). Кристалл закрепляют цангами на оси вихревой трубки, изготовленной из прозрачного кварца. В корпусе вихревой трубки устанавливают сопло-улитку. На противоположном конце трубки находится диффузор. Сжатый воздух из внешней сети поступает через подводящий патрубок в сопло. Образующийся там вихрь движется в осевом направлении вдоль трубки к диффузору. Интенсивная закрутка воздушного потока создает градиент статического давления и высокую турбулентность. Вследствие этого в центральной части вихревой трубки создается зона пониженного давления и температуры. Наличие диффузора способствует снижению температуры в этой зоне до —100° С. Высокая турбулентность вихря обеспечивает большие значения коэффициента теплообмена 200...550 Вт/(м2 • К). Ось вихревой трубки совмещена с кристаллом активного вещества. Отработанный воздух из диффузора поступает внутрь отражателя, охлаждает лампу и выходит наружу. Отсутствие тепловой изоляции вихревой трубки от корпуса камеры не сказывается на теплофизических характеристиках системы охлаждения, так как низкотемпературная зона в центре вихря отделяется от стенок трубки периферийными слоями, имеющими температуру, близкую к окружающей. Эта же особенность исключает запотевание наружных стенок кварцевой трубки. Оптимальная площадь сечения сопла при давлении 9,81 • 104 Па составляет одну десятую площади сечения вихревой трубки, а оптимальное отношение длины трубки к диаметру равно 3...5. Для наилучшего охлаждения кристалла величину зазора между дисками диффузора следует выбрать равной (0,05... 0,07) • Da. W Dy — диаметр вихревой трубки. Значения коэффициента теплообмена и температуры охлаждения ДТ зависят от давления р и отношения d/D„ 0,25...0,8; составляет: а = (360...525) Вт/м2 • К. Системы термостабилизации, использующие вихревой эффект, надежны и конструктивно просты.

2. Расчет вихревого холодильника

Опыт, накопленный в результате исследования вихревого эффекта, позволил создать методику расчета, пользуясь которой, можно получить оптимальные соотношения для размеров вихревой камеры. Из исследований следует отметить работу А. Меркулова, в которой приведена методика расчета вихревых труб диаметром 20—50 мм. Указанная методика базируется на использовании известных зависимостей коэффициента температурной

эффективности hx от

.

Коэффициент температурной эффективности представляет собой отношение эффекта охлаждения DТ, к эффекту охлаждения DTs; при изоэнтропийном расширении:

(1.1)

где T1 — абсолютная температура на входе;

Тx — абсолютная температура холодного потока;

k — показатель адиабаты;

— степень расширения вихревого холодильника.

Для вихревых холодильников коэффициент температурной эффективности не зависит от T1 в интервале температур 30—150° С при 2<π< 6.

Схема расчета вихревого воздухохолодильника:

1. Определяется степень расширения холодильника по заданному эффекту охлаждения DTx= Т1 -Tx

(1.2)

Коэффициент температурной эффективности ηx рассчитывается по графику.

2. Давление воздуха на входе P1 = π · Px.

3. Расход воздуха:

(1.3)

где Qx —холодопроизводительность холодильника, равная теплопритокам к объекту охлаждения;

Ср — теплоемкость воздуха при постоянном давлении;

ΔTm— допускаемый подогрев воздуха на охлаждаемом объекте. Величину μ принимают, как указывалось выше, равной 0,6 или 0,3—0,2.

4. Площадь сечения соплового входа. Выбор формулы для расчета сечения сопла зависит от того, является ли истечение из сопла до- или сверхкритическим. Критическое отношение давлений для воздуха πkp == 1.89.

Вначале определяют степень неполноты расширения горячего потока: π' = 1,59 —0,27π + 0,062π2, и степень недорасширения потока на выходном срезе сопла π" = 1,2π'.

Затем находят степень расширения в сопле πс= π/π11 Если степень расширения в сопле больше критической, то проходное сечение сопла определяется по формуле

(1.4)

где αc— коэффициент расхода сопла (0,94 — 0,96).

Если степень расширения в сопле меньше критической, расчет ведется по формуле

(1.5)

где γ— удельный вес воздуха на входе в сопло;

g — ускорение силы тяжести.

5. Размеры соплового входа. В случае прямоугольного сечения сопла рекомендуется брать отношение высоты h к ширине b равным 0,5. Сечение может быть и квадратным.

6. Внутренний диаметр вихревой камеры

7. Диаметр отверстия диафрагмы холодного воздуха Dx = Dг(0,35+ 0,313μ).

8. Длина вихревой зоны выбирается равной L = (8—10)Dг.

Определим параметры воздуха и геометрические размеры вихревого микрохолодильника, если холодный поток должен иметь температуру Тx = —50° С. Теплопритоки к охлаждаемому объекту составляют 10 кал/мин. Допускаемый подогрев холодного потока ΔΤm== 10° С. Температура воздуха на входе T1 = 20°С.

1. Эффект охлаждения DTx= Т1 -Tx= 293 — 223 = 70° К.

2. Необходимая степень расширения воздуха

Здесь k = 1,41; ηx, = 0,5 [формула (1.1)].

3. Давление воздуха на входе P1 = 9,3·1 == 9,3 ama.

Учитывая недостаточность опытных данных по расчету труб малого диаметра, берем начальное давление завышенным и равным 10 aтa и следовательно P1 = 10.

4. Расход воздуха

=21 г/мин. Здесь Qx= 10 кал/мин; Ср = 0,24 кал/град; ΔΤm== 10° С; μ=0,2 [формула (1.2)].

5. Площадь соплового входа π΄= 5,09; π" = 6,1; πс =

=1.63<1.89

Степень расширения в сопле получилась меньше критической, поэтому площадь сопла определим по формуле (1.5).

Подставив G = 0,00035 кГ/сек; аc = 0,95; k = 1,41; g = = 981 см/сек2; γ == 1,16-10-6 кГ/см3; πc = 1,63; P1 = 10 кг/см2, получим Fc = 0,0045 см2 = 0,45 мм2.

6. Размер соплового входа. Приняв сечение сопла квадратным, найдем его сторону: b=h=

= 0,67 мм.

7. Внутренний диаметр трубы Dг== 3,62-0,67 = 2,4 мм.

8. Диаметр отверстия диафрагмы Dx = 2,4·(0,35 + 0,313· 0,2) = 1 мм.

9. Длина вихревой зоны L == 9-2,4 = 21,6 мм.

По описанной методике Е. И. Антоновым совместно с С. Т. Цуккерманом был разработан и экспериментально исследован миниатюрный вихревой холодильник МХ-2.

Отличительной особенностью этого микрохолодильника являются его малые габариты и вес. При длине 50 мм и максимальном диаметре 18 мм он весит всего 15 г. Микрохолодильник рассчитан на работу от магистрали сжатого воздуха при давлении от 2 до 15 кГ/см2 и может быть использован для охлаждения объектов до температур порядка —50° С при комнатных условиях.

3. Расчет энергетических характеристик

Эффективность и техническое совершенство энергетических систем и квантовых приборов принято оценивать значениями выходной энергии, мощности, к. п .д. и квантовой эффективности. Если твердотельные лазеры оценивать по к. п. д., не учитывая их уникальные физические свойства, то они покажутся малоэффективными системами (к.п.д. лучшего рубинового или неодимового лазера не превышает 1,5%). Образно говоря, огромная река входной энергии оптической накачки превращается в хилый ручеек индуцированного излучения. Для предварительной оценки энергетических характеристик проектируемых твердотельных лазеров можно использовать методику расчета мощности лазеров, работающих в режиме свободной генерации при температуре 300 К с усреднением значений мощности по отдельным пикам спектра излучения. Энергия импульса индуцированного излучения с длительностью импульса τи для лазера, имеющего активное вещество объемом V = Sl, равна Eвых == РвыхV τи

Для оценки выходной энергии, излучаемой лазером, желательно, чтобы она была выражена через известные или измеряемые экспериментально параметры. Например, количество ионов хрома, перешедших на уровень Е2 с частотой перехода v32 при энергии оптической накачки Eh квантовой эффективности (квантовом выходе люминесценции) ηэ равно:

Число полезно излученных фотонов в рабочем переходе при N2 ~ N/2 равно (Енηэ/hV32 — Nо/2), выходная энергия