P(AUB)=P(A)+P(B)=0,20.
Таким образом, вероятность какого – либо выигрыша равна 0,2.
3. Закон равномерной плотности вероятности.
В некоторых задачах практики встречаются непрерывные случайные величины, о которых заранее известно, что их возможные значения лежат в пределах некоторого определенного интервала; кроме того, известно, что в пределах этого интервала все значения случайной величины одинаково вероятны (точнее, обладают одной и той же плотностью вероятности). О таких случайных величинах говорят, что они распределяются по закону равномерной плотности.
Дадим определение: равномерным называется распределение непрерывной случайной величины Х все значения которой лежат на отрезке [a;b] и имеют при этом постоянную плотность распределения:
площадь под кривой распределения равна 1 и поэтому с(в-а)=1
вероятность попадания случайной величины Х на интервал от (α;β)
α=а, если α<а
β=в, если β>в
основные числовые характеристики закона распределения плотности вычисляются по общим формулам и они равны
Приведем примеры подобных случайных величин:
Пример 1. Произведено взвешивание тела на точных весах, но в распоряжении взвешивающего имеются только разновески весом не менее 1г.; результат взвешивания показывает, что вес тела заключен между k и (k+1/2) граммам. Допущенная при этом ошибка X , очевидно, есть случайная величина, распределенная с равномерной плотностью на участке
г.Пример 2. Вертикально поставленное симметричное колесо (см.Рисунок№1) приводится во вращение и затем останавливается вследствие трения. Рассматривается случайная величина θ –угол, который после остановки будет составлять с горизонтом фиксированный радиус колеса ОА. Очевидно величина θ распределена с равномерной плотностью на участке (0,2 π)
Итак, я рассмотрю случайные величины и функции распределения.
4. Случайные величины
Определение. Пусть
— произвольное вероятностное пространство.Случайной величиной
называется измеримая функция , отображающая в множество действительных чисел , т.е. функция, для которой прообраз любого борелевского множества есть множество из -алгебры .Примеры случайных величин. 1) Число выпавшее на грани игральной кости.
2) Размер выпускаемой детали. 3) Расстояние от начала координат до случайно брошенной в квадрат точки
.Множество значений случайной величины
будем обозначать , а образ элементарного события — . Множество значений может быть конечным, счетным или несчетным.Определим
-алгебру на множестве . В общем случае -алгебра числового множества может быть образована применением конечного числа операций объединения и пересечения интервалов или полуинтервалов вида ( ), в которых одно из чисел или может быть равно или .В частном случае, когда
— дискретное (не более чем счетное) множество, -алгебру образуют любые подмножества множества , в том числе и одноточечные.Таким образом
-алгебру множества можно построить из множеств или , или .Будем называть событием
любое подмножество значений случайной величины : . Прообраз этого события обозначим . Ясно, что ; ; . Все множества , которые могут быть получены как подмножества из множества , , применением конечного числа операций объединения и пересечения, образуют систему событий. Определив множество возможных значений случайной величины — и выделив систему событий , построим измеримое пространство . Определим вероятность на подмножествах (событиях) из таким образом, чтобы она была равна вероятности наступления события, являющегося его прообразом: .Тогда тройка
назовем вероятностным пространством случайной величины , где— множество значений случайной величины
; — -алгебра числового множества ; — функция вероятности случайной величины .Если каждому событию
поставлено в соответствие , то говорят, что задано распределение случайной величины . Функция задается на таких событиях (базовых), зная вероятности которых можно вычислить вероятность произвольного события . Тогда событиями могут быть события .