Смекни!
smekni.com

Применение точечных и интервальных оценок в теории вероятности и математической статистике (стр. 2 из 2)

Если бы закон распределения оценки ã был известен, то для нахождения доверительного интервала нужно было бы найти такое значение d, для которого

. Но закон распределения оценки ã зависит от закона распределения случайной величины Х и, следовательно, от его неизвестного параметра а. Для того чтобы не применять закон распределения случайной величины Х, поступают следующим образом.

Так как мы считаем значение выборки х1, х2, х3,…,хn, имеющими те же законы распределения, что и исследуемая случайная величина Х, то, согласно центральной предельной теореме (теоретическое выборочное распределение средних

при большом n может быт хорошо аппроксимировано соответствующим нормальным распределением параметрами М(
) = М(
) и
, большинство числовых характеристик выборки имеют нормальное или близкое значение к нормальному выборочное распределение.

Поэтому с помощью вероятностей, которые находим из таблиц нормального распределения

, где
, для заданного d можно найти такое интервал ] ã - d; ã+d [, в котором лежит значение ã, вычисленное по данной выборке можно решить и обратную задачу: по данной вероятности найти значение d

, такое что
.

Неравенства а - d≤ ã ≤а + d эквивалентны неравенствам ã - d≤ а ≤ ã + d (вычтем ã - d из каждой части и умножим на –1). Тем самым указаны методы построения доверительных интервалов ] ã - d; ã + d [ для параметра а.

Таким образом, при построении доверительных интервалов составляется случайная величина Y (например,

, связанная с неизвестным параметром а, его оценкой и имеющая известную плотность распределения вероятностей p(y). Используя эту плотность, определим доверительный интервал по формуле
.

В качестве доверительно вероятности (иначе – уровня доверия) обычно полагают

а =0,95 (0,99). Это значит, что при извлечении n выборок из одной и той же генеральной совокупности доверительный интервал примерно в 95% (99%) случаев будет накрывать неизвестный параметр (относительно неизвестного параметра вероятные события не допускаются). При увеличении же доверительной вероятности строится более широкий доверительный интервал, который малопригоден для практики. Еще раз подчеркнем, что чем меньше длина доверительного интервала, тем точнее оценка.

Отметим, что для точного нахождения доверительных интервалов необходимо знать закон распределения случайной величины Х, тогда как для применения приближенных методов это не обязательно.

Список литературы

Гурский Е.И. «Теория вероятности и математическая статистика».

Хеннекен П.А. «Теория вероятности»

Барковский В.В. «Теория вероятности и математическая статистика».