Смекни!
smekni.com

Производная и ее применение в алгебре, геометрии, физике (стр. 3 из 7)

Следовательно, площадь участка наибольшая (максимум), если ширина х =15м, а длина 60 — 2x = 60 -- 30=30 (м)

2°. Каковы должны быть размеры прямоугольной комнаты, площадь которой 36 x2, чтобы периметр ее был наименьший?

Решение. Пусть длина равна х м, тогда ширина прямоугольника 36/x м, а периметр:

Y=2(x+36/x)=2x+72/x.

Периметр у есть функция длины x, определенная для всех положительных значений x:

0<x<+∞

Определим промежутки ее возрастания и убывания:

y’=2-72/x2=2(x2-36)/x2=2(x-6)(x+6)/x2.

Знак производной определяется знаком разности x-6. В промежутке

0<x<6 y'<0, а в промежутке 6<x<+∞ y'>0.

Периметр убывает в промежутке 0<x<6 и возрастает в промежутке 6<x<+∞. График (черт.) построим по таблице:

Если х = →0 3 4 5 6 7 8 →∞
То у = →∞ 30 26 24,4 24 24,3 25 →∞

Следовательно, периметр прямоугольника имеет наименьшее значение (минимум), если длина его 6 м и ширина 36/6 м = 6 м, т. е. когда он квадрат.

Максимум и минимум функции

Задачи на отыскание наибольших и наименьших значений величин имеют важное значение в технике и, как это ясно из примеров, сводятся к отысканию максимума и минимума функции.

Определение. 1. Функция f(x) имеет при х=с максимум, если ее значение при х=с больше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.

2. Функция f(x) имеет при x= с минимум, если ее значение при х=с меньше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.

Термины "максимум" и "минимум" объединяются в один общий для них термин "экстремум".

Значение аргумента, которое дает максимум (или минимум) функции, называется точкой максимума (минимума), или точкой экстремума.

Функция может иметь только максимум, например функция y = 60x— 2х2 (черт. 111), или только минимум, например функция у = 2х+72/x (черт. 112), или иметь

максимум и минимум, как, например, функция у = х3— — х2 — 8х+2 (черт. 108). Функция может иметь несколько максимумов и минимумов (черт. 113), причем в этом случае максимумы и минимумы чередуются. Функция может не иметь ни максимума, ни минимума. Например, функции у = х3, y = ctgx, y = ax не имеют ни максимума, ни минимума, так как при возрастании х от — ∞ до +∞ первая и третья функции возрастают, а вторая только убывает.

Максимум (минимум) функции может не быть наибольшим (наименьшим) значением ее. Так, изображенная на черт. 113 функция имеет в точке с. значение, большее максимумов с1М1 и с3М2, а в точке с0 значение, меньшее минимума c2m1, и c4m2, минимум c4m2 больше максимума с1М1. Максимум (минимум) функции в данной точке вообще есть наибольшее (наименьшее) значение функции по сравнению с ее значениями в точках, лежащих слева и справа от точки экстремума лишь в достаточной близости к ней.

Признаки существования экстремума

1°. Теорема (необходимый признак). Если в окрестности 2δ точки х=с:

1) функция f(х) дифференцируема, 2) значение х=с есть точка экстремума функции f(x), то ее производная в точке с равна нулю, m. e. f '(c) = 0.

Доказательство. Пусть для определенности х=c есть точка максимума (черт. 111). Представим значения независимого переменного х левой полуокрестности точки с в виде с — Δx:, а правой в виде с+ Δx, где 0< Δx < δ. Значение функции f(x) в точке с есть f(c), в левой полуокрестности оно равно f(с — Δx), а в правой f(c + Δx). Значения f(x) в окрестности 2δ точки с поставлены, таким образом, в зависимость от значений Δx, причем значение х = с -/+ Δx неограниченно приближается к числу с, если Δx стремится к нулю.

По определению максимума функции:

f(c- Δx)<f(c) и f(c + Δx)<f(c).

Отсюда:

f(c-Δx)-f(c)<0 и f(c + Δx)-f(с)<0.

Левые части неравенств выражают приращение функции в точке х = с при изменении аргумента соответственно на — Δx и + Δx. Составив отношение приращения функции к приращению аргумента, получаем:

(f(c —Δx)—f(с))/(-Δx))>0 (1); (f(с + Δx)—f(с)/(+Δx))<0 (2) Оба отношения (1) и (2) имеют один и тот же предел при Δx → 0, так как по условно функция f(x) имеет в точке с определенную произвольную:

Из неравенства (1) следует, что f '(с) либо положительна, либо равна нулю, а неравенство (2) показывает, что f '(с) не может быть положительной. Следовательно,

f‘(c) = 0,

что и требовалось доказать.

2°. Теорема (достаточный признак). Если в окрестности 2δ точки x = с:

1) функция f(x) непрерывна,

2) ее производная, f '(х), слева от точки х = с положительна, а справа отрицательна, то значение х = с есть точка максимума функции.

Доказательство. Данная функция непрерывна в точке c, поэтому число f(с) есть общий предел для f(c — Δx) и f(c+Δx) при Δx → 0 (как и в предыдущей теореме, здесь и в последующем 0 < Δx< δ):

Данная функция f(x) в левой полуокрестности точки с — возрастающая, так как ее производная слева от точки с положительна, а в правой полуокрестности — убывающая, так как ее производная справа от точки с отрицательна (черт.), и вследствие этого ее значения

f(c —Δx) и f(c+Δx)

возрастают при стремлении Δx к нулю (по определению убывающей функции, меньшему значению аргумента отвечает большее значение функции, т. е. при x1>x2 f(x1)<f(x2)).

Другими словами, как f(c — Δx), так и f(c+Δx) приближаются к своему пределу f(с) так, что для каждого значения Δx ≠ 0:

f(c - Δx) < f(c) и f(c + Δx) < f(c).

Но в таком случае f(c) есть максимум функции f(x) в точке х = с.

3°. Так же можно доказать, что если в окрестности 2δ точки х = с:

1) функция f(x) непрерывна, 2) производная f '(x) слева от точки х = с отрицательна, а справа положительна, то значение х = с есть точка минимума функции (черт.).

4°. Как в точке максимума, так и в точке минимума производная равна нулю (1°). Обратное неверно. Функция может не иметь ни максимума, ни минимума в точке, в которой производная равна нулю.

Например, функция у = х3 имеет в точке x =0 производную, равную нулю. Однако в точке х = 0 нет ни максимума, ни минимума, функция у = х3 при всех значениях х, в том числе и при x = 0, возрастает. Отсюда, в точке х=с функция f(x) не имеет на максимума, ни минимума, если при х = с ее производная равна нулю и имеет один и тот же знак как слева, так и справа от точки х = с.

5°. Определение. Значения аргумента х, при которых производная f '(х) равна нулю, называются стационарными точками.

Касательная в стационарных точках параллельна оси Ох. В окрестности точки максимума касательная составляет с осью абсцисс острый угол, если точка лежит слева от точки максимума, и тупой угол, если справа от нее (черт.). В случае минимума, напротив, касательная составляет с осью абсцисс тупой угол, если точка находится слева от точки минимума, и острый, если справа от нее (черт.).

Правило нахождения экстремума

1°. Чтобы найти экстремум функции, надо:

1) найти производную данной функции;

2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3) определить знак производной в каждом из промежутков, отграниченных стационарными точками;

4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;

5) затенить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.

Нахождение экстремума при помощи второй производной

1°. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.

Доказательство от противного. Пусть для определенности f '(c)>0, т. е.

Предположим, что при стремлении ∆x к нулю приращения ∆y и ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел

f '(c) ≤ 0,

что противоречит условию.

Так же доказывается и вторая часть леммы.

2°. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;

если же вторая производная отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.

Доказательство. Вторая производная по отношению к первой производной является тем же, чем первая производная по отношению к данной функции, т. е.

Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности 2δ точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.