Следовательно, площадь участка наибольшая (максимум), если ширина х =15м, а длина 60 — 2x = 60 -- 30=30 (м)
2°. Каковы должны быть размеры прямоугольной комнаты, площадь которой 36 x2, чтобы периметр ее был наименьший?
Решение. Пусть длина равна х м, тогда ширина прямоугольника 36/x м, а периметр:
Y=2(x+36/x)=2x+72/x.
Периметр у есть функция длины x, определенная для всех положительных значений x:
0<x<+∞
Определим промежутки ее возрастания и убывания:
y’=2-72/x2=2(x2-36)/x2=2(x-6)(x+6)/x2.
Знак производной определяется знаком разности x-6. В промежутке
0<x<6 y'<0, а в промежутке 6<x<+∞ y'>0.
Периметр убывает в промежутке 0<x<6 и возрастает в промежутке 6<x<+∞. График (черт.) построим по таблице:
Следовательно, периметр прямоугольника имеет наименьшее значение (минимум), если длина его 6 м и ширина 36/6 м = 6 м, т. е. когда он квадрат.
Максимум и минимум функции
Задачи на отыскание наибольших и наименьших значений величин имеют важное значение в технике и, как это ясно из примеров, сводятся к отысканию максимума и минимума функции.
Определение. 1. Функция f(x) имеет при х=с максимум, если ее значение при х=с больше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.
2. Функция f(x) имеет при x= с минимум, если ее значение при х=с меньше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.
Термины "максимум" и "минимум" объединяются в один общий для них термин "экстремум".
Значение аргумента, которое дает максимум (или минимум) функции, называется точкой максимума (минимума), или точкой экстремума.
Функция может иметь только максимум, например функция y = 60x— 2х2 (черт. 111), или только минимум, например функция у = 2х+72/x (черт. 112), или иметь
максимум и минимум, как, например, функция у = х3— — х2 — 8х+2 (черт. 108). Функция может иметь несколько максимумов и минимумов (черт. 113), причем в этом случае максимумы и минимумы чередуются. Функция может не иметь ни максимума, ни минимума. Например, функции у = х3, y = ctgx, y = ax не имеют ни максимума, ни минимума, так как при возрастании х от — ∞ до +∞ первая и третья функции возрастают, а вторая только убывает.
Максимум (минимум) функции может не быть наибольшим (наименьшим) значением ее. Так, изображенная на черт. 113 функция имеет в точке с. значение, большее максимумов с1М1 и с3М2, а в точке с0 значение, меньшее минимума c2m1, и c4m2, минимум c4m2 больше максимума с1М1. Максимум (минимум) функции в данной точке вообще есть наибольшее (наименьшее) значение функции по сравнению с ее значениями в точках, лежащих слева и справа от точки экстремума лишь в достаточной близости к ней.
Признаки существования экстремума
1°. Теорема (необходимый признак). Если в окрестности 2δ точки х=с:
1) функция f(х) дифференцируема, 2) значение х=с есть точка экстремума функции f(x), то ее производная в точке с равна нулю, m. e. f '(c) = 0.
Доказательство. Пусть для определенности х=c есть точка максимума (черт. 111). Представим значения независимого переменного х левой полуокрестности точки с в виде с — Δx:, а правой в виде с+ Δx, где 0< Δx < δ. Значение функции f(x) в точке с есть f(c), в левой полуокрестности оно равно f(с — Δx), а в правой f(c + Δx). Значения f(x) в окрестности 2δ точки с поставлены, таким образом, в зависимость от значений Δx, причем значение х = с -/+ Δx неограниченно приближается к числу с, если Δx стремится к нулю.
По определению максимума функции:
f(c- Δx)<f(c) и f(c + Δx)<f(c).
Отсюда:
f(c-Δx)-f(c)<0 и f(c + Δx)-f(с)<0.
Левые части неравенств выражают приращение функции в точке х = с при изменении аргумента соответственно на — Δx и + Δx. Составив отношение приращения функции к приращению аргумента, получаем:
(f(c —Δx)—f(с))/(-Δx))>0 (1); (f(с + Δx)—f(с)/(+Δx))<0 (2) Оба отношения (1) и (2) имеют один и тот же предел при Δx → 0, так как по условно функция f(x) имеет в точке с определенную произвольную: Из неравенства (1) следует, что f '(с) либо положительна, либо равна нулю, а неравенство (2) показывает, что f '(с) не может быть положительной. Следовательно,
f‘(c) = 0,
что и требовалось доказать.
2°. Теорема (достаточный признак). Если в окрестности 2δ точки x = с:
1) функция f(x) непрерывна,
2) ее производная, f '(х), слева от точки х = с положительна, а справа отрицательна, то значение х = с есть точка максимума функции.
Доказательство. Данная функция непрерывна в точке c, поэтому число f(с) есть общий предел для f(c — Δx) и f(c+Δx) при Δx → 0 (как и в предыдущей теореме, здесь и в последующем 0 < Δx< δ): Данная функция f(x) в левой полуокрестности точки с — возрастающая, так как ее производная слева от точки с положительна, а в правой полуокрестности — убывающая, так как ее производная справа от точки с отрицательна (черт.), и вследствие этого ее значения
f(c —Δx) и f(c+Δx)
возрастают при стремлении Δx к нулю (по определению убывающей функции, меньшему значению аргумента отвечает большее значение функции, т. е. при x1>x2 f(x1)<f(x2)).Другими словами, как f(c — Δx), так и f(c+Δx) приближаются к своему пределу f(с) так, что для каждого значения Δx ≠ 0:
f(c - Δx) < f(c) и f(c + Δx) < f(c).
Но в таком случае f(c) есть максимум функции f(x) в точке х = с.
3°. Так же можно доказать, что если в окрестности 2δ точки х = с:
1) функция f(x) непрерывна, 2) производная f '(x) слева от точки х = с отрицательна, а справа положительна, то значение х = с есть точка минимума функции (черт.).
4°. Как в точке максимума, так и в точке минимума производная равна нулю (1°). Обратное неверно. Функция может не иметь ни максимума, ни минимума в точке, в которой производная равна нулю.
Например, функция у = х3 имеет в точке x =0 производную, равную нулю. Однако в точке х = 0 нет ни максимума, ни минимума, функция у = х3 при всех значениях х, в том числе и при x = 0, возрастает. Отсюда, в точке х=с функция f(x) не имеет на максимума, ни минимума, если при х = с ее производная равна нулю и имеет один и тот же знак как слева, так и справа от точки х = с.
5°. Определение. Значения аргумента х, при которых производная f '(х) равна нулю, называются стационарными точками.
Касательная в стационарных точках параллельна оси Ох. В окрестности точки максимума касательная составляет с осью абсцисс острый угол, если точка лежит слева от точки максимума, и тупой угол, если справа от нее (черт.). В случае минимума, напротив, касательная составляет с осью абсцисс тупой угол, если точка находится слева от точки минимума, и острый, если справа от нее (черт.).
Правило нахождения экстремума
1°. Чтобы найти экстремум функции, надо:
1) найти производную данной функции;
2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;
3) определить знак производной в каждом из промежутков, отграниченных стационарными точками;
4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;
5) затенить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.
Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.
Нахождение экстремума при помощи второй производной
1°. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.
Доказательство от противного. Пусть для определенности f '(c)>0, т. е. Предположим, что при стремлении ∆x к нулю приращения ∆y и ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел
f '(c) ≤ 0,
что противоречит условию.
Так же доказывается и вторая часть леммы.
2°. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;
если же вторая производная отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.
Доказательство. Вторая производная по отношению к первой производной является тем же, чем первая производная по отношению к данной функции, т. е. Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности 2δ точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.