S’ = (4b(b—1)—b2)/(4(b—1)2) = (4b2—4b—2b2)/(4(b—1)2) = 2b(b—2)/(4(b—1)2) =
= b(b—2)/(2(b—1)2);
S’ = 0;
точки экстремума:
b=1;
b=2;
но b>1, значит
Sнаим =S(2) = 4/(2(2—1))=2(ед2);
Ответ: 2 ед2.
Задача 5. В прямоугольном параллелепипеде ABCDA1B1C1D1 с ребрами CD = 24, AD= 6 и DD1 =4 проведена плоскость через центр симметрии грани A1B1C1D1 , вершину А и точку Р, лежащую на ребре DC. Какую наименьшую площадь может иметь сечение параллелепипеда этой плоскостью? На какие части делит точка P ребро DC в этом случае?
Решение. Проведем плоскость и построим сечение (рис.). АО Î АA1C1С - линия, принадлежащая данной плоскости. Продолжим АО до пересечения с CC1 в точке S. Тогда SP - линия пересечения грани DD1C1C и данной плоскости, а сечение ANMP - параллелограмм. Sсеч = SAMNP = SK*AP/2 , потому что SK/2— высота параллелограмма ANMP. Это видно из следующего рассуждения.
Пусть PC = x; ΔCLP подобен ΔDAP,
LC/AD = x/(24—x), LC = 6x/(24—x);_____________ ____________
Из ΔCLP: KC = (6x*x/(24—x))/(√(36x2/(24—x)2)+x2) = 6x/(√(36+ (24—x)2);
________ ___________________ __________________
Из ΔSCK: SK = √SC2+ KC2 = √64+36x2/(36+(24—x)2) = 2√16+9x2/(36+(24—x)2) ;
Из ΔADP: AP = √36+(24—x)2;_____ _________________ __________________
Sсеч = AP*SK/2 = 0,5*(√36+(24—x)2) 2√16+9x2/(36+(24—x)2) = √16(36+(24—x)2)+9x2;
Если S’(x) = 0, то 18x+16*2(24—x)(-1) = 0;
50x—32*24 = 0, x = 32*24/50 = 32*12/25 = 384/25 (это точка min);
Sсеч = 312;
DP = 24—16*24/25 = 216/25;
Ответ: 312 кв. ед.; DC: 384/25; 216/25.
Решение. HF=FC=1/2;
S∆BME = BM*EK*1/2;___ _
Из ∆TCH => TH = √4—1=√3;
EF = TH/2=√3/2;
Пусть MC = x.
Из ∆BMC по теореме косинусов MB2= x2+4—2*2*x*1/2;
MB = √x2—2x+4; _ _
S∆BMC = 0,5*MC*BC*sinC=(x/2)*2√3 /2 = x√3/2;
S∆BMC = 0,5*BM*PC, _ ________
PC = (2S∆BMC)/BM, PC = x√3/√x2—2x+4 ;
∆KMF подобен ∆PMC(по двум углам):
KF/PC = MF/MC(рис 2),_____ _ _________
KF = x√3(x—1/2)/(x√x2—2x+4) = √3(x—1/2)/(√x2—2x+4);
________ ______________________
Из ∆KEF => KE = √ KF2+EF2 = √3(x—1/2)2/(x2—2x+4)+3/4; _
S∆BME = 0,5√x2—2x+4 *√3(x—1/2)2/(x2—2x+4)+3/4 = 0,5√3(x—1/2)2+(x2—2x+4)*3/4;
Если S’(x) = 0, то
6(x—1/2)+(2x—2)*3/4 = 0;
15x—9 = 0;
x = 3/5; __
S(3/5) = √15/5 кв.ед.
Ответ: √15/5 кв.ед.
Задача 7. В сферу радиусом R вписана правильная треугольная пирамида, у которой боковое ребро образует с высотой пирамиды угол 60o. Какую наименьшую площадь может иметь треугольник MBK, если точка M лежит на апофеме пирамиды, а BK — высота основания пирамиды, не пересекающая апофему?
Решение. TP = 2R, ÐATO = 60o.
Пусть AB = BC = CA = a(рис.)
Тогда AO = a√3/3,
AD = BK = a√3/2, _ _
TO = AO*ctg60o= a√3/3*1/√3 = a/3,
OD = a√3 /6,
a2/3 = a(2R – a/3)/3, a = 3R/2.
S∆MBK = BK*LM*1/2, BK = const,
S∆MBK = f(LM),__
LM = √MN2+NL2
Пусть MD = x, тогда MN = x cos / NMD; _
cos Ð NMD = TO/TD = a/(3√a2/9+a2/12 = 2/√7, MN = 2x/√7 .
Из ∆ONL: LN = ON cos30o (ÐONL = 30o);
ON = OD – ND, _ _ _ _ _
ND = x sin ÐNMD = x √3/√7, ON = a√3/6 - x√3/√7,
LN = (a√3/6 - x√3/7)√3/2 = (a/4 – 3x/(2√7)),
LM = √4x2/7+(a/4 – 3x/(2√7))2. _ _
Если LM’(x) = 0, то 8x/7+2(a/4 – 3x/(2√7))(-3/2√7) = 0,
8x/7 – 3a/4√7 + 9x/14 = 0,
25x/14 = 3a/4√7,
x = 21a/50√7. __ __
MN = (21a/50√7)*(2/√7) = 3a/25,
LN = a/4 – (3/2√7)*(21a/50√7) = 4a/25,
LM = √a2/625 + 9a2/625 = a√10/25. _
S∆MBK = a√3/2*a/5*1/2 = a√3/20 = 9√3 R2/80.
Ответ: 9√3 R2/80.
Задача 8. В сферу радиусом R вписана правильная треугольная пирамида, высота которой в 1,5 раза меньше высоты основания. Между боковой гранью пирамиды и сферой расположена правильная четырехугольная призма, одно из оснований которой (ближнее к центру сферы) лежит в плоскости боковой грани пирамиды, а вершины другого основания принадлежат сфере. Какой должна быть высота призмы, чтобы ее объем был наибольшим? Найти этот объем.
Решение. SABC – правильная треугольная пирамида (рис), вписанная в сферу радиусом R,
SO*1,5 = AD,
LMN – правильная четырехугольная призма.
Найти. Vпр = f(LM).
Пусть SO = H, тогда AD = 1,5H;
SO1 = R – радиус сферы; LM = x –высота призмы.
∆SKO1 подобен ∆SOD => O1K/OD = SO1/SD => OK1 = OD*SO1/SD.
Из ∆AO1O: R2 = AO2 + O1O2 = (2AD/3)2 + (AD*2/3 - R)2,
R2 = 4AD2/9 + 4AD2/9 –AD*R*4/3,
8AD2/9 = AD*R*4/3 => AD = 3R/2.
Отсюда OD = R/2;
AO1 = R и SO1 = R; _
SD = √R2 + R2/4 = R√5/2, _
OK1 = 2*R*R/(2R√5) = R√5/5;
O1K = R√5/5.
Из ∆O1FN => R2 = (O1K + x)2 + NF2,
|
Sосн = 2NF2. _
Vпр = Sосн*x = 2(R2 – R2/5 – 2x√5 R/5 - x2)*x;
Vпр = 2(4R2x/5 – 2x2√5 R/5 - x3);
V’пр(x) = 2(4R2/5 – 2x√5 R/5 - 3x2) = 0; _
x 1,2 = (2R√5/5 + √4R2/5 + 12R2/5)/(-3) = (2R√5/5 + 4R/√5)/(-3);
x = 2√5 R/15 _ _
Vпр.max = 2(4R2*2√5R/(5*15) – 2√5R*4R2/(45*5) - _ 40√5R3/(225*15)) = 16R3√5(1 – 1/3 – 5/45)/75 = 16√5R3/135.
Ответ: 16√5R3/135 м3 при H = 2√5R/15.
Дано. ASO – конус;
SO = H;
AO = R;
CL/CM = BK/BN;
Найти. BN, чтобы Vпр = max
Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.
∆CSD подобен ∆ASO: CD/AO = SD/SO;
CD/R = (H – x - h)/H;
CD = R(H – x -h)/H.
∆BSE подобен ∆ASO: BE/AO = SE/SO;
BE/R = (H - h)/H;
BE = R(H - h)/H.
Находим отношение CD/BE = (H – x - h)/(H - x).
Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,
что CD/BE = h/x, т. е. (H – x - h)/(H - x) = h/x => h = (Hx – x2)/H
Тогда CD = R(H – x – (Hx – x2)/H)/H = R(H2 – Hx – Hx +x2)/H2 = R(H - x)2/H2,
CL = 2CD = 2R(H - x)2/H2.
V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;
(H – x) – 5x = 0, x = H/6.
V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.
Ответ: при H/6, Vmax = 2R2H*55/66.
В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин.
Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 – b/r, где a и b — положительные постоянные, r — расстояние между частицами.
Найти:
а) значение r0 соответствующее равновесному положению частицы;
б) выяснить устойчиво ли это положение;
в) Fmax значение силы притяжения;
г) изобразить примерные графики зависимости U(r) и F(r).
a и b — counts; Для определения r0 соответствующего равновесному
Fmax — ? Используя связь между потенциальной энергией поля
U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;
при этом r = r0; 2a/r3 = b/r2 => r0 = 2a/b;
Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02= dF/dr0=-6a/r04 + 2b/r03 = -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a3)<0;
равновесие устойчивое.
Для определения Fmax притяжения исследую на экстремумы функцию:
F = 2a/r3— b/r2;
dF/dr = -6a/r4 + 2b/ r3 = 0;
при r = r1 = 3a/b;
подставляя, получу Fmax = 2a/r31 — b/r31 = - b3/27a2;
F = 0; F(r)max при r = r1 = 3a/b;
Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1 в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.
Определить сопротивления резисторов при которых сопротивление исходной цепи будет наибольшим.
При параллельном соединении резисторов эквивалентное
R1, R2, R3 сопротивление по формуле:
Rэкв max— ? выражу R3 через R2:
R3 = R— R1—R2=R—10R2;
тогда 1/Rэкв = (10R—91R2)/(9R2(R—10R2));
Задача сведена к определению наименьшего значения функции в интервале [0;R/10].
Возьмем производную от f(1/Rэкв) по R2 и преобразуем ее:
(1/Rэкв)’ = -910(R2—R/7)(R2—R/13)/(9R22 (R-10R2)2);
В интересующем нас интервале только одна точка R2 = R/13 в которой эта производная меняет знак с “—” слева на ”+”справа. Поэтому в точке R2 = R/13 достигается минимум функции 1/Rэкв и максимум функции Rэкв, при этом
R1 = 9R/13; R2 = 1R/13; R3 = 3R/13;
Rэкв max = 9R/169;
Задача 4. В магнитном поле с большой высоты падает кольцо, имеющее диаметр d и сопротивление R. Плоскость кольца все время горизонтальна. Найти установившуюся скорость падения кольца, если вертикальная составляющая индукции магнитного поля изменяется с высотой H по закону B = B0(1 + αH), где α = const (черт.).
Решение. Пусть n – нормаль к плоскости кольца, тогда магнитный поток, созданный вертикальной составляющей магнитного поля.,
Ф = BS = B0(1 + αH)S, где S = πd2/4 – площадь контура.
ЭДС индукции, возникающая в кольце,
E = - Ф’(t) = - (B0(1 + αH)S)’ = - B0SαH’(t).
Ei = - B0Sα( - νн).
Так как скорость кольца направлена против оси H, то νн = - ν, где ν – модуль скорости кольца и Ei = B0Sαν.
По кольцу протекает индукционный ток
J = Ei /R = B0Sαν/R.
В результате в кольце за промежуток времени Δt выделяется количество теплоты