Смекни!
smekni.com

Производная и ее применение в алгебре, геометрии, физике (стр. 1 из 7)

Научная работа

Автор Бирюков Павел Вячеславович.

Гимназия №1 города Полярные Зори

Январь-май 2004 г.

Производная функция

Поставим своей задачей определить скорость, с которой изменяется величина у в зависимости от изменения величины х. Так как нас интересуют всевозможные случаи, то мы не будем придавать определенного физического смысла зависимости y=f(x), т.е. будем рассматривать величины х и у как математические.

Рассмотрим функцию y=f(x), непрерывную на отрезке [а, b]. Возьмем два числа на этом отрезке: х и х+∆x; первое, х, в ходе всего рассуждения считаем неизменным, ∆x — его приращением. Приращение ∆x; аргумента обусловливает приращение ∆у функции, причем:

∆y=f(x+∆x)-f(x). (I)

Найдем отношение приращения ∆у функции к приращению ∆x аргумента:

∆у/∆x=(f(x+∆x)-f(x))/ ∆x. (II)

По предыдущему, это отношение представляет собой среднюю скорость изменения у относительно х на отрезке

[x, x+∆x].

Будем теперь неограниченно приближать ∆x к нулю.

Для непрерывной функции f(x) стремление ∆x к нулю вызывает стремление к нулю ∆у, отношение (II) становится при этом отношением бесконечно малых, вообще величиной переменной. Пусть это переменное отношение (II) имеет вполне определенный предел(утверждать, что определенный предел отношения ∆x/∆у всегда существует нельзя), обозначим его символом f '(х).

(III)

С физической точки зрения этот предел есть значение скорости изменения функции f(x) относительно ее аргумента при данном значении х этого аргумента. В анализе этот предел называют производной данной функции в точке х.

Определение. Производной данной функции в точки х называется предел отношения приращения этой функции к приращению аргумента в точке х, когда приращение аргумента стремится к нулю.

2°. Пусть каждому значению аргумента х соответствует определенное значение скорости изменения функции f(x). Тогда скорость f '(х) есть новая функция аргумента х, она называется производной функцией от данной функции f(x).

Например, производная функция от квадратной функции Q=bt+at2 есть линейная функция Q' = b + 2at.

3°. Производная функция обозначается так: 1) у данной функции ставится штрих на том месте, где обычно помещается показатель степени, или 2) перед обозначением

данной функции ставится символ d/dx.

Если данная функция обозначена буквой у, то ее производная может быть обозначена:

1) у', читать: «производная функции у»,

или

2) dy/dx, читать: «дэ игрек по дэ икс».

Если данная функция обозначена символом f(x), то ее производная может быть обозначена:

1) f '(х), читать: «производная функции f(x)»,

или же

2) df(x)/dx, читать: «дэ эф от икс по дэ икс».

4°. Нахождение производной от данной функции называется дифференцированием данной функции.

Общее правило дифференцирования (нахождения производной) следующее:

1) найти приращение ∆y функции, т. е. разность значений функции при значениях аргумента x + ∆x и x;

2) найти отношение ∆y/∆x, для этого полученное выше равенство разделить на ∆x;

3) найти предел отношения ∆y/∆x при ∆x →0.

Пример. Найти производную функции у = х3 + 1 в любой точке x.

Решение. 1) ∆y = (x + ∆x)3 + 1 — (х3 + 1).

По выполнении действий:

∆y = Зx2*∆x+Зx*∆x 2+∆x 3;

2) ∆y/∆x=3x2 + Зx*∆x+∆x 2;

3) dy/dx = lim(3x2+3x*∆x+∆x 2 = 3x2+3x*0+0 = 3x2.

∆x→0

5°. Заметим, что производная линейной функции у= =kx+b есть величина постоянная, равная k.

Действительно, для линейной функции y = kx+b

∆у = k*∆x;

∆y/∆x=k;

6°. Производные часто встречаются в технике и естествознании. Примеры производных: 1) при движении тела пройденный путь s есть функция от времени t скорость движения в данный момент времени t есть производная от пути s по времени t, т. е.

υ=ds/dt;

2) при вращательном движении твердого тела (например, маховика) (черт) вoкруг оси Ох, угол поворота его φ есть функция времени t:

φ=f(t);

угловая скорость (омега) в данный момент времени t есть производная от угла поворота по времени, т. е.

ω=dφ/dt;

3) при охлаждении тела температура Т тела есть функция времени t,

T=f(t);

скорость охлаждения в момент времени t есть производная от температуры Т по времени с, т. е. dT/dt;

4) теплоемкость С для данной температуры t есть производная от количества теплоты Q по температуре t,

C=dQ/dt;

5) при нагревании стержня его удлинение ∆l, как показывают тщательные опыты, лишь приближенно можно считать пропорциональным изменению температуры Дt. Поэтому функция l=f(t) является не линейной, а отношение ∆l/∆t лишь средним коэффициентом линейного расширения на отрезке [t, t+Дt]. Коэффициент линейного расширения а при данном значении температуры t есть производная от длины l по температуре t,

α=dl/dt

Касательная к кривой

1°. Возьмем на прямой АВ (черт) точку С и проведем через нее прямую СМ, не совпадающую с АВ. Вообразим, что прямая СМ вращается вокруг точки С так, что угол γ между прямыми стремится к нулю. Неподвижная прямая АВ называется в этом случае предельным положением подвижной прямой СМ.

2°, Вообразим, что на кривой АВ (черт. 93) точка М неограниченно приближается к неподвижной точке С, секущая СМ при этом вращается вокруг точки С. Может случиться, что, независимо от того, будет ли точка М приближаться к С в направлении от A к С или от В к С (на черт точка M'), существует одна и та же прямая СТ — предельное положение секущей СМ.

Определение. Прямая СТ, предельное положение секущей СМ, называется касательной к кривой в точке С.

Точка С называется точкой прикосновения или касания.

3°. Следствие. Угол φ (черт.), образуемым касательной СТ с осью Ох, есть предел угла α, образуемого с осью Ох секущей СМ, для которой данная касательная служит предельным положением.

Действительно, угол γ между касательной СТ и секущей СМ равен разности α — φ:

α — φ = γ.

По определению касательной, угол γ — бесконечно малая величина, а поэтому

φ — limα. (I)

4°. Теорема. Если к линии y=f(x) в точке х имеется касательная, непараллельная Оу, то угловой коэффициент касательной равен значению производной f '(х), в точке х.

Доказательство. Угловой коэффициент касательной:

tgφ = tg(limα),

так как, по предыдущему, φ = limα.

Исключая случай φ = π/2,

в силу непрерывности тангенса имеем: tg(limα) = lim tgα.

Поэтому tgφ = lim tgα.

По формуле (VI) для СМ (черт.) имеем:

tgα=(f(x+Δx) -f (x))/Δx

Переходя к пределу при Δx→0 (точка М при Δx→ 0 неограниченно приближается к С, а угол α→φ), имеем:


Следовательно, (IV)

Геометрический смысл производной

1°. Справедлива обратная теорема, выражающая геометрический смысл производной: если функция y=f(x) имеет определенную производную в точке х, то:

1) в этой точке имеется касательная к графику функции,

2) угловой коэффициент ее равен значению производной f '(x) в точке х.

Д о к а з а т е л ь с т в о. По условию, существует предел отношения Δy/Δx. Но отношение Δу/Δx есть тангенс угла секущей СМ (черт.).

Δy/Δx=tgx (1)

Значит, согласно условию, существует

Из равенства (1) следует:

α=arctg(Δy/Δx).

Вследствие непрерывности арктангенса, имеем:


Но, по условию, существует и равен числу f '(х). Поэтому


Полагая arctg f '(x)=φ, получаем:


Следовательно, существует предел α. Значит, существует прямая, проходящая через точку С, угол которой с Ох равен Такая прямая есть касательная в данной точке С[х, f(x)] и ее угловой коэффициент tgφ = f '(x).

2°. Замечания. 1. Угловой коэффициент k прямой y=kx+b называется наклоном прямой к оси Ох. Наклоном кривой y=f(x) в точке (х1, у1) называется угловой коэффициент касательной к кривой, он равен значению производной в этой точке, т. е. tgφ = f '(х1).

2. Если касательная в точке (х1, y1) кривой y=f(x) образует с Ох: а) острый угол φ, то производная f '(x)>0, так как tgφ >0 (черт.); б) тупой угол φ, то производная f '(х1)<0, так как tgφ<0 (черт.). Если касательная параллельна оси Оx (черт.), то угол φ=0, tgφ=0 и f '(х1) = 0.

Когда касательная перпендикулярна оси Ох, то стремление α к π/2 может дать один и тот же бесконечный предел как «справа», так и «слева»: tgφ= + ∞ (черт.) пли tgφ=- ∞(черт.), или давать «слева» и «справа» бесконечные пределы разного знака (на черт. в точке С «слева» tgφ = +∞, а «справа» tgφ= - ∞). В первом случае, в точках А и В, функция f(x), говорят, имеет бесконечную производную; во втором случае, в точке С, не существует ни конечной, ни бесконечной производной.

Заметим, что бесконечные производные рассматриваются лишь в точках непрерывности функции f(x).