Результаты расчетов
Приведем некоторые результаты численных расчетов пусковых режимов анодной защиты стального цилиндра, заполненного серной кислотой и защищаемого одним цилиндрическим катодом (рис. 2).
Рис. 2. Схема электрохимической системы. Sa – защищаемая поверхность; Sk – поверхность катода; Ra, Rk – радиусы анода и катода; h – расстояние между центрами электродов;
, – углы отсчета граничных точек на аноде и катоде; – нормаль к границе.Радиусы границ имеют значения: Ra=10 см, Rk=2 см; электропроводность среды
=10 см/м. Расстояние между центрами границ h изменялось от 0 до 7 см. Напряжение U изменялось от 0 до Umax=2.4 В, затем обратно от Umax до 0.На рис. 3 представлены зависимости потенциала в различных точках анода (а) и катода (б) от приложенного напряжения при скорости пуска V=36 В/час. Стрелками указаны решения при прямой и обратной развертке напряжения. На участке U1<U2<U3 наблюдаются два решения: верхнее соответствует активному растворению, нижнее - пассивному состоянию анода. Из рисунка видно, что для достижения пассивного состояния анода (U=U) необходимо вначале увеличивать напряжение U от 0 до U2 (верхняя ветвь графика), а затем уменьшать от U2 до U (нижняя ветвь). Волна пассивации перемещается по поверхности анода от точки
=0 к удаленной точке =, при этом защитный потенциал возрастает (от линии 1 к линии 4).Рис. 3. Зависимость потенциала от приложенного напряжения при h=5 см; V=36 В/час на аноде (а) при углах
, равных, рад: 1 – 0; 2 – /3; 3 – 2 /3; 4 – ; и на катоде (б) при углах , равных, рад: 5 – 0; 6 – /2; 7 – .В табл. 1 приведены параметры пассивной зоны (U1, U2) при различных расстояниях h между центрами границ. Из таблицы видно, что с увеличением h меняется ширина пассивной зоны, причем наименьшее значение (0.6) соответствует h=3.
Таблица 1. Интервал пассивной зоны при различных расстояниях h между центрами электродов
h, см. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
U2-U1, В | 0.97 | 0.80 | 0.64 | 0.60 | 0.72 | 0.84 | 0.89 | 1.01 |
На рис. 4 представлены зависимости плотности тока от напряжения в точках электродов, наименее удаленных друг от друга: (а) – в анодной точке
=0, (б) – в катодной точке =0 при различных h.Рис. 4. Зависимость анодной (а) и катодной (б) плотности тока от приложенного напряжения при V = 36 В/час;
=0, =0; и h, равных, см: 1 – 7; 2 – 5; 3 – 3; 4 – 1.Из рисунка видно, что по мере сближения центров окружностей: 1) напряжение, соответствующее максимальной плотности тока, увеличивается (от линии 1 к линии 4); 2) напряжение, соответствующее минимальной плотности тока в пассивном состоянии анода (U1.5), практически не зависит от h; 3) на аноде максимальная плотность тока не зависит от h и совпадает с критической плотностью тока на анодной поляризационной кривой; на катоде максимум j растет (от линии 1 к линии 4).
Рис. 5. Зависимость катодной плотности тока от напряжения при V=36 В/час; h, равных, см: (а) – 3; (б) – 7; и углах
, равных: 1 – 0; 2 – /2; 3 – .На рис. 5 представлены зависимости плотности тока от напряжения в трех точках катодной границы при различных h. Из рисунка видно, что при увеличении h: 1) максимальная плотность тока в точке, наиболее близкой к аноду, падает (линия 1); 2) максимальная плотность тока в наиболее удаленной от анода точке (линия 3) практически не меняется; 3) напряжение U1 (переход анода в активное состояние при обратной развертке) от h практически не зависит; 4) напряжение U2 (переход анода в пассивное состояние при прямой развертке) - значительно увеличивается.
Общие коррозионные потери характеризуются суммарным анодным зарядом. В табл. 2 приведены значения заряда Q, стекающего с анодной поверхности цилиндра единичной длины при V=36 В/час за время пуска анодной защиты.
Таблица 2. Общий пусковой заряд Q, прошедший через анод при различных h.
h, см. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Q, Кл | 4730 | 3860 | 3020 | 2810 | 2800 | 2860 | 2950 | 3100 |
Из таблицы видно, что значение заряда существенно зависит от расположения катода. Так, например, минимальный заряд (Qmin 2800 Кл) соответствует h4. Для сравнения отметим, что при скорости V=36 В/час заряд Qmin 9450 Кл при h2.7. Следовательно, оптимальное расположение катода при заданной скорости пуска V не является оптимальным при других значениях V.
Список литературы
Улиг Г.Г., Реви Р.У. Коррозия и борьба с ней. Л.: Химия, 1989. 455 с.
Атанасянц А.Г. Анодное поведение металлов. М.: Металлургия, 1989. 150 с.
Иванов В.Т., Глазов Н.П., Макаров В.А. // Итоги науки и техники. Коррозия и защита от коррозии. М.: ВИНИТИ, 1987. Т. 13. С. 117.
Агафонова Н.Н., Макаров В.А. // Защита металлов. 1989. Т. 25. С. 531.
Болотнов А.М., Иванов В.Т. // Электрохимия. 1996. Т. 32. С. 694.
Томашов Н.Д., Чернова Г.П. Пассивность и защита металлов от коррозии. М.: Наука, 1965. 207 с.
Дамаскин Б.Б., Петрий О.А. Электрохимия. М.: ВШ, 1987. 295 с.
Багоцкий В.С. Основы электрохимии. М.: Химия, 1988. 400 с.
Ильин В.П. Численные методы решения задач электрофизики. М.: Наука, 1985. 334 с.