то BE=8, BО1=8+r, AО1=5+r, О1D=4–r.
Из прямоугольного треугольника AO1D (5+r)2=25+(4–r)2, 18r=16, r=
.ВО2=R–8, О2D=12–(R–8)=20–R, О2A=R–5,
и, следовательно, из прямоугольного треугольника АО2D имеем
(R–5)2=(20–R)2+25 R=
=13 .Здесь следует напомнить учащимся, что прямая, проходящая через центры двух касающихся окружностей, проходит через точку их касания.
В заключение приведем одну задачу на доказательство, которая требует от учащихся достаточно высокой логической культуры.
Задача 8. Докажите, что треугольник является равнобедренным в том и только в том случае, когда равны биссектрисы двух внутренних углов.
Если в треугольнике АВС (рис.6) АВ=ВС, то углы А и С равны и равны треугольники ВАЕ и ВСD, так как В - общий и ВАЕ= ВСD, следовательно, АЕ=СD.
Докажем справедливость обратного утверждения. Пусть биссектрисы AE и CD углов А и С треугольника АВС равны. Докажем, что А= С. S АВС=S ВАЕ+S ЕАС АВ· АС· sinА= АВ· АЕ· sin + АЕ· АС· sin 2· АВ· АСcos =(АВ+АС)АЕ АЕ= .Разделив числитель и знаменатель дроби на произведение АВ· АС и обозначив
АВ=с, АС=b, ВС=a, получим
, аналогично, биссектриса .Если допустить, что А С, например, А< С, то сos
>cos и а<c > AE>CD, получили противоречие.Приведенные в статье задачи предлагались на вступительных экзаменах в различных вузах России, в том числе, в Ярославском госуниверситете.
Список литературы
Пойа Д., Как решать задачу, М.: Учпедгиз,1961,207 с.
Смирнов Е.И., Технология наглядно-модельного обучения математике, Ярославль,1997,323с.
Чаплыгин В.Ф., Чаплыгина Н.Б., Задачи вступительных экзаменов по математике, Ярославль, 1991,140с.
Чаплыгин В.Ф., Чаплыгина Н.Б., Задачи вступительных экзаменов по алгебре и геометрии, Ярославль, 1999,112с.
Сборник задач по математике для поступающих в вузы (под ред. Прилепко А.И.), М.: Высшая школа,1989,271с.
Зафиевский А.В., Вступительные экзамены по математике в 1998году, Ярославль, 1999,36с.
Лидский В.Б., Овсянников Л.В., Тулайков А.Н., Шабунин М.Н., Задачи по элементарной математике, М.: Физматгиз, 1960, 463с.