Смекни!
smekni.com

О некоторых трудностях, возникающих при решении геометрических задач (стр. 2 из 2)

то BE=8, BО1=8+r, AО1=5+r, О1D=4–r.

Из прямоугольного треугольника AO1D (5+r)2=25+(4–r)2, 18r=16, r=

.

ВО2=R–8, О2D=12–(R–8)=20–R, О2A=R–5,

и, следовательно, из прямоугольного треугольника АО2D имеем

(R–5)2=(20–R)2+25  R=

=13
.

Здесь следует напомнить учащимся, что прямая, проходящая через центры двух касающихся окружностей, проходит через точку их касания.

В заключение приведем одну задачу на доказательство, которая требует от учащихся достаточно высокой логической культуры.

Задача 8. Докажите, что треугольник является равнобедренным в том и только в том случае, когда равны биссектрисы двух внутренних углов.

Если в треугольнике АВС (рис.6) АВ=ВС, то углы А и С равны и равны треугольники ВАЕ и ВСD, так как  В - общий и  ВАЕ= ВСD, следовательно, АЕ=СD.

Докажем справедливость обратного утверждения. Пусть биссектрисы AE и CD углов А и С треугольника АВС равны. Докажем, что  А= С. S АВС=S ВАЕ+S ЕАС 
АВ· АС· sinА=
АВ· АЕ· sin
+
АЕ· АС· sin
 2· АВ· АСcos
=(АВ+АС)АЕ  АЕ=
.

Разделив числитель и знаменатель дроби на произведение АВ· АС и обозначив

АВ=с, АС=b, ВС=a, получим

, аналогично, биссектриса
.

Если допустить, что  А  С, например,  А< С, то сos

>cos
и а<c 
>
 AE>CD, получили противоречие.

Приведенные в статье задачи предлагались на вступительных экзаменах в различных вузах России, в том числе, в Ярославском госуниверситете.

Список литературы

Пойа Д., Как решать задачу, М.: Учпедгиз,1961,207 с.

Смирнов Е.И., Технология наглядно-модельного обучения математике, Ярославль,1997,323с.

Чаплыгин В.Ф., Чаплыгина Н.Б., Задачи вступительных экзаменов по математике, Ярославль, 1991,140с.

Чаплыгин В.Ф., Чаплыгина Н.Б., Задачи вступительных экзаменов по алгебре и геометрии, Ярославль, 1999,112с.

Сборник задач по математике для поступающих в вузы (под ред. Прилепко А.И.), М.: Высшая школа,1989,271с.

Зафиевский А.В., Вступительные экзамены по математике в 1998году, Ярославль, 1999,36с.

Лидский В.Б., Овсянников Л.В., Тулайков А.Н., Шабунин М.Н., Задачи по элементарной математике, М.: Физматгиз, 1960, 463с.