Рассмотрим поворот вокруг точки C на 90°. RC90°:A ®B, D®E, E®E1, C®C. ЗначитRC90°:AE®BE1, CE®CE1. Следовательно, AE^BE1, CE = CE1. Так как CD=CE, то CD=CE1. По условию DK^AE и CH^AE. Тогда BE1||CH||DK. По теореме Фалеса имеем BH=HK.
ЗАДАЧА 10.
Решение.
Рассмотрим поворот вокруг точки С на 900:
Следовательно,
ЗАДАЧА 11.
Доказать, что биссектрисы внутренних углов параллелограмма при пересечении образуют прямоугольник.
Пусть дан параллелограмм АВСД (рис. 11), АА1, ВВ1, СС1 и ДД1 – биссектрисы его внутренних углов; К, Н, М, Р – точки их пересечения. Надо доказать, что четырехугольник КНМР является прямоугольником. Рассмотрим поворот вокруг точки пересечения диагоналей параллелограмма на 1800, то есть центральную симметрию относительно точки
Тогда
Дан равносторонний треугольник АВС и произвольная точка М (рис.12). Доказать, что длина большего из трех отрезков МА, МВ, МС не больше суммы длин двух других.
Решение.
Пусть ВМ – наибольший из указанных отрезков. Рассмотрим поворот вокруг точки В на 600.
Дополнительно о возможностях использования движений при решении геометрических задач можно прочитать в приведенной ниже литературе.
Список литературы
Атанасян Л.С., Базылев В.Т. Геометрия. Ч. 1. – М. Просвещение, 1986.
Атанасян Л.С., Атанасян В.А. Сборник задач по геометрии. Ч. 1. – М., Просвещение, 1973.
Базылев В.Т., Дуничев К. И., Иваницкая В.П. Геометрия. Ч. 1. – М. Просвещение, 1974.
Вересова Е.Е., Денисова Н.С. Сборник задач по геометрическим преобразованиям.- М.: МГПИ им. В.И. Ленина, 1978.
[1]Движением называется преобразование плоскости, сохраняющее расстояние между любыми двумя точками.