Смекни!
smekni.com

Целая и дробная части действительного числа (стр. 2 из 2)

Ответ : ( 0,5 + m ; 1 + m )

( k ; 0,2 + k ),

m О Z , k О Z

Пример 3.

Построить график функции y = { x }

Построение.

1). ООФ : x О R

2). МЗФ : y О [ 0 ; 1 )

3). Функция y = { x } периодическая и ее период

T = m , m О Z, т.к. если х О R, то (x+m) О R

и (x-m) О R, где m О Z и по 3° { x + m } =

{ x – m } = { x }.

Наименьший положительный период равен 1, т.к. если m > 0, то m = 1, 2, 3, . . . и наименьшее положительное значение m = 1.

4). Так как y = { x } – периодическая функция с периодом 1, то достаточно построить ее график на каком-нибудь промежутке, длиной 1, например, на промежутке [ 0 ; 1 ), тогда на промежутках, получаемых сдвигами выбранного на m, m О Z, график будет таким же.

а). Пусть х О [ 0 ; 1 ), тогда { x } = x и y = x . Получим , что на промежутке [ 0 ; 1 ) график данной функции представляет отрезок биссектрисы первого координатного угла, из которого исключен правый конец.

б). Воспользовавшись периодичностью, получаем бесконечное множество отрезков, образующих с осью Ох угол в 45° , из которых исключен правый конец.

Примечание.

Кружочками отмечены точки, не принадлежащие графику.

Пример 4.

Решить уравнение 17 [ x ] = 95 {x }

Решение

Т.к. { x } О [ 0 ; 1 ), то 95 { x }О [ 0 ; 95), а, следовательно, и 17 [ x ]О [ 0 ; 95 ). Из соотношения

17 [ x ]О [ 0 ; 95 ) следует [ x ]О

, т.е. [ x ] может равняться 0 , 1 , 2 , 3 , 4 , и 5.

Из данного уравнения следует, что { x } =

, т.е. с учетом полученного множества значений для

[ x ] делаем вывод : { x }, соответственно, может равняться 0 ;

Т. к. требуется найти х, а х = [ x ] + { x }, то получаем, что х может равняться

0 ;

Ответ :

Примечание.

Аналогичное уравнение предлагалось в 1 туре краевой математической олимпиады для десятиклассников в 1996 году.

Пример 5.

Построить график функции y = [ { x } ].

Решение

ООФ : х О R, т.к. { x }О [ 0 ; 1 ) , а целая часть чисел из промежутка [ 0 ; 1) равна нулю, то данная функция равносильна y = 0

y

0 x

Пример 6.

Постройте на координатной плоскости множество точек, удовлетворяющих уравнению { x } =

Решение

Т. к. данное уравнение равносильно уравнению х =

, m О Z по 5°, то на координатной плоскости следует построить множество вертикальных прямых х =
+ m, m О Z

y

0
x

Список литературы

Алгебра для 9 класса: Учеб. пособие для учащихся школ и классов с углубл. изучением математики /Н. Я. Виленкин и др., по ред. Н. Я. Виленкина.- М. Просвещение, 1995 г.

В. Н. Березин, И. Л. Никольская, Л. Ю. Березина Сборник задач для факультативных и внеклассных занятий по математике - М. 1985

А. П. Карп Даю уроки математики - М., 1982 г.

Журнал “Квант”, 1976, № 5

Журнал “Математика в школе”: 1973 №1, №3; 1981 №1; 1982 №2; 1983 №1; 1984 №1; 1985 №3.