Смекни!
smekni.com

Проблема иррациональных чисел (стр. 1 из 2)

А.И. Сомсиков

Проблема иррациональности впервые обнаружена в геометрии при извлечении корня. Она известна еще в эпоху “античности”, связываемую с именем Пифагора.

Выявленное логическое противоречие состоит в следующем. С одной стороны имеется доказательство того, что все точки на прямой являются целыми или дробными, т.е. “рациональными” числами.

Это доказательство таково.

Берется отрезок прямой с координатами его концов 0 и 1. Обе эти координаты являются целыми числами.

Отрезок делится пополам и рассматриваются каждый из вновь полученных отрезков.

Концы этих отрезков имеют координаты 0 и 0,5 или 0,5 и 1, являющиеся целыми или дробными, т.е. “рациональными” числами.

Продолжается повторное разбиение пополам, сближающее края последующих отрезков при их сохранении каждый раз заведомо рациональными числами.

В пределе, при бесконечном разбиении, края отрезков сливаются в точку, оставаясь при этом рациональными числами.

Логический вывод гласит, что исходный отрезок оказывается заполненным одними лишь рациональными числами, иными словами ни для какой "иррациональности" места не остается.

Другое доказательство наоборот приводит к тому, что некоторые точки на прямой не могут быть заданы ни целыми, ни дробными числами, т.е. не являются рациональными.

Это доказательство таково: берется равнобедренный прямоугольный треугольник с длиной каждого катета равной 1. Согласно теореме Пифагора длина гипотенузы при этом составляет

. Это не может быть ни целым числом, ни несократимой дробью
, поскольку в этом случае a2 = 2b2. Следовательно, a есть четное число представимое как a = 2k. Но тогда a2=(2k)2=4k2=2b2. А значит и b2 = 2k2, т.е. b – тоже четное число. Получаем логическое противоречие: с одной стороны дробь
должна быть несократима (в противном случае ее можно сократить на общий множитель), с другой же стороны обе ее части a и b - четные числа, т.е. имеют общий множитель 2, а значит, дробь является сократимой.

Итак, первому логически не противоречивому доказательству противостоит второе - логически противоречивое доказательство.

Поскольку первое доказательство не содержит логического противоречия, оно не может вызывать никаких сомнений и должно считаться безусловно верным.

Второе же доказательство напротив содержит внутри себя логическое противоречие. А значит, во-первых, оно ни в коем случае не может служить опровержением первого - логически непротиворечивого доказательства. И, во-вторых, именно оно, как содержащее внутри себя логическое противоречие, должно считаться крайне сомнительным и требующим дополнительного рассмотрения.

Предлагаемое рассмотрение таково.

Прежде всего, что означает это приравнивание длины катетов числу 1? А вот что: это значит, что оба катета измерены с помощью некоторого эталона, и что результат этого измерения равен единице. Естественный вопрос для любого измерения: с какой точностью? Ответ такой: при измерении любым эталоном абсолютная погрешность измерения равна самому эталону, а точность измерения, определяется отношением абсолютной погрешности (величины эталона) к самой измеряемой величине - относительной погрешностью.

Величина эталона относительно себя самой равна единице с бесконечной степенью точности, что может быть выражено в виде десятичной дроби: э =1,(0). А вот величины обоих катетов а и b, измеренных таким эталоном должны выглядеть так: а =1

= 1
, b =1
= 1
, где э – величина эталона.

В данном случае получим: абсолютная погрешность

,
, a = 1
1, b =1
1. А относительная погрешность, определяющая точность каждого измерения, равна соответственно

a(%) =
и
.

И даже если принять в качестве эталона один из катетов, например, а, что означает

a(%) = 0,(0), т.е. бесконечную точность его измерений и равенства нулю его относительной погрешности, то все равно относительная погрешность измерения второго катета останется
100%.

Вот что означает на практике это небрежное брошенное условие равенства единице длин обоих катетов.

И что мы получим при измерении гипотенузы таким эталоном э?

Вариантов ответа два: с = 1

или с =
.

В первом случае погрешность измерения гипотенузы равна 100%, как и в случае катета, а во втором случае – 50%. Ясно, что второй ответ более точен, хотя тоже не очень хорош.

Что мы теперь имеем по теореме Пифагора? Катеты равны 1

1, т.е. их можно считать равными 1 или 2, а гипотенуза и вовсе может быть равной 1 или 2, или даже 3. Причем каждый из этих ответов по-своему верен с известной степенью точности.

Но в то же время 12+12

12 или 22 и уж тем более 32.

И второй возможный вариант тоже дает: 22+22

12 или 22 или 32.

И даже принятие в качестве эталона одного из катетов тоже дает: 12+22

12 или 22, или 32. Другими словами требуемое равенство не достигается ни при каком варианте таких измерений.

Точность повышается при уменьшении величины эталона э, например, в 10 раз.

В этом случае а = 10

1, b = 10
1, c = 14
1,
a = 10%,
b = 10%,
c =
=7%.

Или в 100 раз, когда а = 100

1, b = 100
1, c = 141
1,
a = 1%,
b = 1%,
c =
=0,7%, и т.д.

При этом однако все еще остается: а2+b2

c2, т.е. теорема Пифагора по-прежнему не выполняется.

Это достигается только при бесконечной точности измерений, когда величина эталона э = 0,(0), а = 10000…=

,
b = 10000…=
,
c = 14142135623730950488016887242097141…=
,

Или при выражении через исходный эталон э: а = 1,(0), и b = 1,(0), c = 1,4142135623730950488016887242097141…

В этом и только в этом случае теорема Пифагора справедлива, принимая однако вид: а2 + b2 = c2

.

В обычном понимании это может выглядеть сложновато, однако уже не содержит более никакого логического противоречия.

И что же все это значит?

А вот что: теорема Пифагора, как и вообще все теоремы геометрии без всякого исключения справедливы при условии выполнения еще одной теоремы.

Ввиду ее всеобщности и исключительной важности, она может быть названа Великой Геометрической Теоремой (ВГТ).

Ее содержание таково: все геометрические теоремы верны при одном обязательном условии - бесконечной точности измерений.

А значит, в рассматриваемом нами частном случае никаких таких целых чисел 1 обоих катетов нет и быть не может, а может быть только лишь бесконечная десятичная дробь вида: а = 1,(0), и b =1,(0).