Е.А. Кудревич, А.Е. Поличка, кафедра математического анализа ХГПУ
При подготовке учащихся к математической олимпиаде часто сталкиваешься с проблемой- каким методам решения задач уделить больше времени. Можно предложить, например, такие критерии: чтобы детям было интересно, чтобы данным методом решался большой круг задач, чтобы можно было использовать исторический материал и т. п. Всем этим критериям в полной мере удовлетворяет метод, основанный на применении графов. Один из авторов предлагаемой вниманию читателей статьи – декан физико-математического факультета ХГПУ Анатолий Егорович Поличка несколько лет преподает школьникам и студентам элементы теории графов и учит их применять графы к решению задач. Более того, он активно привлекает к этому делу своих учеников – студентов ХГПУ.
Как и в спорте, тренировка юного математика требует затраты большого времени. Для успеха на олимпиаде необходимы некоторые специальные типы одаренности.
Не следует забывать о том, что не всякий может в непривычной и суровой атмосфере олимпиадного конкурса продемонстрировать все, на что он способен. Как правило конкурсный КПД оказывается значительной ниже 100%. В связи с этим, полезно располагать хотя бы некоторым запасом прочности, чтобы быть застрахованным от случайности.
Теперь можно точнее сформулировать основную задачу факультатива: как можно полнее развить потенциальные творческие способности каждого слушателя факультатива, не ограничивая заранее сверху уровень сложности используемого задачного материала. Как видно, личная цель – подготовка к олимпиаде – совпадает с общественной – повышения уровня математической подготовки учащихся средней школы.
Обращаю внимание на то, что олимпиады проверяют в отличии от экзаменов сообразительность, а не выучку; поэтому самое лучшее – если школьник, не рассчитывая на свои знания, разовьет все свои способности, на которых бы основывались "экспромты".
Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придется работать, те инструменты с помощью которых выполняется эта работа.
Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.
Решая практические задачи с помощью теории графов ясно видно, что в каждом шаге, в каждом этапе ее решения необходимо применить творчество. С самого начала, на 1 этапе, оно заключается в том, суметь проанализировать и закодировать условия задачи. Второй этап – схематическая запись. состоит в геометрическом представлении графов, и на этом этапе элемент творчества очень важен потому, что далеко не просто найти соответствия между элементами условия и соответствующими элементами графа.
Все остальные этапы тоже не обходятся без применения творчества и изобретательности. Проведение поиска способа и осуществления решения задачи (с проверкой и исследованием) нуждается в следующих способностях решающих: способность абстрагирования, способность моделирования, способность гибкого применения теории графов, способность применения всех известных математических способов решения. Бесспорно, формулирование ответа задачи это тоже творческое изобретение, т.к. также необходима и кодировка и абстрагирование. Заключительный анализ задачи тоже не легок, необходимо творчески найти то рациональное зерно, по которому можно будет определить к какому типу задач относится данная решенная.
По данной проблеме разработаны следующие классификации:
По теории используемой при решении | По способам решения | ||
1 | Маршруты | 1. | Имеющие другие способы |
2 | Группы знакомства | решения: | |
3 | Множества элементов | а) | Метод математической ин- |
4 | Спортивные турниры | дукции | |
5 | Выбор соответствия | б) | Комбинаторные методы |
6 | Мосты | в) | Метод составления таблиц |
7 | Наибольшее и наименьшее | 2. | Не имеющие других способов |
3. | Требующие особых приемоврешения |
Первая классификация необходима для построения теоретического курса, так как каждый теоретический факт, включенный в факультативный курс должен быть закреплен при решении задач теоретического характера.
Вторая классификация необходима для выявления связи теории графов с другими разделами математики. Задачи 3-го типа этой классификации решаются с помощью выбора некоторых элементов из теории графов и применения их в других теориях. То есть при решении таких задач не достаточно знать одну теорию и успешно ее применять, необходимо оперировать понятиями и приемами сразу нескольких теорий.
Приведем примеры решения некоторых задач.
П.Т.З. 1. "Маршруты".
Как вы помните, охотник за мертвыми душами Чичиков побывал у известных помещиков по одному разу у каждого. Он посещал их в следующем порядке: Манилова, Коробочку, Ноздрева, Собакевича, Плюшкина, Тентетникова, генерала Бетрищева, Петуха, Констанжолго, полковника Кошкарева. Найдена схема, на которой Чичиков набросал взаимное расположение имений и проселочных дорог, соединяющих их. Установите, какое имение кому принадлежит, если ни одной из дорог Чичиков не проезжал более одного раза.
Д К
Е С
Н О А FВ М
По схеме дорог видно, что путешествие Чичиков начал с имения Е, а окончил имением О. Замечаем, что в имения В и С ведут только две дороги, поэтому по этим дорогам Чичиков должен был проехать. Отметим их жирной линией. Определены участки маршрута, проходящие через А: АС и АВ. По дорогам АЕ, АК и АМ Чичиков не ездил. Перечеркнем их. Отметим жирной линией ЕD ; перечеркнем DK . Перечеркнем МО и МН; отметим жирной линией MF; перечеркнем FO; отметим жирной линией FH, НК и КО. Найдем единственно возможный при данном условии маршрут. И получаем: имение Е – принадлежит Манилову, D- Коробочке, С – Ноздреву, А – Собакевичу, В – Плюшкину, М – Тентетникову, F - Бетрищеву, Н – Петуху, К – Констанжолго, О – Кошкареву.
Д К
Е С
Н О
А FВ М
П.Т.З. 2 "Группы, знакомства"
Участники музыкального фестиваля, познакомившись, обменялись конвертами с адресами. Докажите, что:
а) всего было передано четное число конвертов;
б) число участников, обменявшихся конвертами нечетное число раз, четно.
Решение: Пусть участники фестиваля А1, А2, А3 . . . , Аn – вершины графа, а ребра соединяют пары вершин, изображающих ребят, обменявшихся конвертами:
А2
А7
А6 А5
а) степень каждой вершины Аi показывает число конвертов, которое передал участник Аi своим знакомым. Общее число переданных конвертов N равно сумме степеней всех вершин графа N = степ. А1 + степ. А2 + + . . . + степ. Аn-1 + степ. Аn , N=2p, где p – число ребер графа, т.е. N – четное. Следовательно, было передано четное число конвертов;
б) в равенстве N = степ. А1 + степ. А2 + + . . . + степ. Аn-1 + степ. Аn сумма нечетных слагаемых должна быть четной, а это может быть только в том случае, если число нечетных слагаемых четно. А это означает, что число участников, обменявшихся конвертами нечетное число раз, четное.