cos j sin j 0
(x* y* 1) = (x y 1) -sin j cos j 0 (3.12)
-a cos j + b sin j + a -a sin j - b cos j + b 1
Элементы полученной матрицы (особенно в последней строке) не так легко запомнить. В то же время каждая из трех перемножаемых матриц по геометрическому описанию соответствующего отображения легко строится.
Пример 2. Построить матрицу растяжения с коэффицентами растяжения aвдоль оси абсцисс и b вдоль оси ординат и с центром в точке А (a, b).
1-й шаг. Перенос на вектор –А (-a, -b) для совмещения центра растяжения с началом координат;
1 0 0
[ T-A ] = 0 1 0 (3.13)
-a -b 1
матрица соответствующего преобразования.
2-й шаг. Растяжение вдоль координатных осей с коэффицентами a и b соответственно; матрица преобразования имеет вид
a 0 0
[ D ] = 0 d 0 (3.14)
0 0 1
3-й шаг. Перенос на вектор А (a, b) для возвращения центра растяжения в прежнее положение; матрица соответствующего преобразования:
1 0 0
[ TA ] = 0 1 0 (3.15)
a b 1
Премножив матрицы в том же порядке
[ T-A ] [ D ] [ TA ],
получим окончательноa 0 0
( x* y* 1) = (x y 1) 0 d 0 (3.16)
(1 - a)a (1 - d)b 1
Рассуждая подобным образом, то есть разбивая предложенное преобразование на этапы, поддерживаемые матрицами [ R ], [ D ], [ M ], [ T ], можно построить матрицу любого аффинного преобразования по его геометрическому описанию.
4. Аффинные преобразования в пространстве
Рассмотрим трехмерный случай (3D) (3-dimension) и сразу введем однородные координаты.
Потупая аналогично тому, как это было сделано в размерности два, заменим координатную тройку (x, y, z), задающую точку в пространстве, на четверку чисел
(x y z 1)
или, более общо, на четверку
(hx hy hz), h = 0.
Каждая точка пространства (кроме начальной точки О) может быть задана четверкой одновременно не равных нулю чисел; эта четверка чисел определена однозначно с точностью до общего множителя.
Предложенный переход к новому способу задания точек дает возможность воспользоваться матричной записью и в более сложных трехмерных задачах.
Любое аффинное преобразование в трехмерном пространстве может быть представленно в виде суперпозиции вращений, растяжений, отражений и переносов. Поэтому вполне уместно сначала подробно описать матрицы именно этих преобразований (ясно, что в данном случае порядок матриц должен быть равен четырем).
А. Матрицы вращения в пространстве.
Матрица вращения вокруг оси абсцисс на угол j:
a 0 0 0
-1 0 0 0
1 0 0 0
1 0 0 0
X
Рис. 10
Решение сформулированной задачи разбивается на несколько шагов. Опишем последовательно каждый из них.
1-й шаг. Перенос на вектор –А (-a, -b, -c) при помощи матрицы
1 0 0 0