Смекни!
smekni.com

Задачи графических преобразований в приложениях моделирования с использованием ЭВМ (стр. 4 из 4)

Y


0


Рис. 11

Направляющий вектор прямой L’ определяется просто – он равен

(0, m, n).

Отсюда сразу же вытекает, что

cos y = n / d, sin y = m / d, (4.10)

где

d = m2 + n2 (4.11)

Соответствующая матрица вращения имеет следующий вид:


1 0 0 0

0 n/d m/d 0

0 -m/d n/d 0

0 0 0 1

Под действием преобразования, описываемого этой матрицей, координаты вектора (l, m, n) изменятся. Подсчитав их, в результате получим

(l, m, n, 1)[ Rx ] = (l, 0, d, 1). (4.13)

2-й поворот вокруг оси оси ординат на угол q, определяемый соотношениями

сos q = l, sin q = -d (4.14)

Cоответствующая матрица вращения записывается в следующем виде:

l 0 d 0
0 1 0 0

-d 0 l 0

0 0 0 1

3-й шаг. Вращение вокруг прямой L на заданный угол j.

Так ка теперь прямая L совпадает с осью аппликат, то соответствующая матрица имеет следующий вид:


cos j sin j 0 0

-sin

j cos j 0 0

0 0 1 0

0 0 0 1

4-й шаг. Поворот вокруг оси ординат на угол -q.

5-й шаг. Поворот вокруг оси абсцисс на угол -y.

Однако вращение в пространстве некоммутативно. Поэтому порядок, в котором проводятся вращения, является весьма существенным.

6-й шаг. Перенос на вектор А (a, b, c).

Перемножив найденные матрицы в порядке их построения, получим следующую матрицу:

[ T ][ Rx ][ Ry ][ Rz ][ Ry ]-1[ Rx ]-1 [ T ]-1.

Выпишем окончательный результат, считая для простоты, что ось вращения ходит через начальную точку.


l2 + cos j(1 – l2) l(1 – cos j)m + n sin j l(1 – cos j)n – m sin j 0

l(1 – cos j)m – n sin j m2 + cos j(1 – m2) m(1 – cos j)n + lsin j 0

l(1 – cos j)n + m sin j m(1 – cos j)n – lsin j n2 + cos j(1 - n2) 0

0 0 0 1

Рассматривая примеры подобного рода, мы будем получать в результате невырожденные матрицы вида

a1 a2 a3 0
b1 b2 b3 0

g1 g2 g3 0

l m n 1

При помощи таких матриц можно преобразовать любые плоские и пространственные фигуры.

Пример 4. Требуется подвергнуть заданному аффинному преобразованию выпуклый многогранник.

Для этого сначала по геометрическому описанию отображения находим его матрицу [ A ]. Замечая далее, что произвольный выпуклый многогранник однозначно задается набором всех своих вершин

Vi ( xi, yi, zi), i = 1,…,n,

Строим матрицу


x1 y1 z1 1

V = . . . . . . . . . . (4.18)

xn yn zn 1

Подвергая этот набор преобразованию, описываемому найденной невырожденной матрицей четвертого порядка, [ V ][ A ], мы получаем набор вершин нового выпуклого многогранника – образа исходного (рис. 12).

Z

0

Y

X

Рис. 11

5. Заключение

Учитывая вышеописанные принципы, была разработана программа моделирования синтеза металлорежущих станков, которая наглядно показывает зависимость компоновки станка от формы обрабатываемой поверхности через код компоновки, а также возможность построения модели станка из стандартных узлов для последующей оценки компоновки. В виду того, что данная программа разрабатывалась как исследование, в ней лишь наглядно демонстрируется модель станка для обработки произвольной поверхности.

Программа построена на основе принципов объектно-ориентированного программирования (ООП). Такой подход был признан оптимальным для данной задачи с учетом того, что модель станка строится на основе компоновочного кода. При реализации сначала была рассмотрена цепочка узлов, представляющая станок. Это привело к трудностям и неудобству реализации отображения 3-х мерной модели в эмулированном графическом пространстве. Поэтому была реализована концепция, рассматривающая станок, как “дерево” объектов, исходя из того, что один из узлов станка, а именно станина, является неподвижным и зафиксированным жесткой привязкой к системе координат. Таким образом, полученная модель представляла собой объект, из которого выходили две “ветви” объектов.

Принципы ООП позволили создать базовый класс, из которого были получены дочерние классы для станины и остальных узлов. Каждый объект инкапсулировал свои свойства и “видел” лишь свои геометрические размеры и координаты, в которые он должен быть помещен, в результате чего модель получилась гибкой.

6. Список используемой литературы.

1. Шишкин Е. В., Боресков А. В. Компьютерная графика. М.: Диалог-МИФИ, 1995. – 288 с., ил.

2. Вайсберг А. В., Гриценко М. Е. Формирование структуры станка на ранних стадиях проектирования. – Точность автоматизированных производств (ТАП – 97). Сборник статей международной научно-технической конференции. Пенза, 1997., с. 52 – 53.