Введение
Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)»j(х).
Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.
Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.
Всё изложенное можно сформулировать в виде четырёх вопросов:
Какие узлы мы будем использовать?
Какой класс приближающих функций мы будем использовать?
Какой критерий согласия мы применим?
Какую точность мы хотим?
Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cosaix, sinaix. Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.
Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.
Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.
Интерполяция многочленами
Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.
Методы интерполяции Лагранжа и Ньютона
Один из подходов к задаче интерполяции — метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, сто функция
является требуемым многочленом степени n; он равен 1, если x=xj и 0, когда x=xi, i¹j. Многочлен Lj(x)×yj принимает значения yi в i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что
есть многочлен степени n, проходящий через n+1 точку (xi, yi).Другой подход — метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn, аппроксимирующую функцию f(x):
P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+
(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn);
— разделённая разность 1-го порядка; — разделённая разность 2-го порядка и т.д.Значения Pn(x) в узлах совпадают со значениями f(x)
Фактически формулы Лагранжа и Ньютона порождают один и тот же полином, разница только в алгоритме его построения.
Сплайн-аппроксимация
Другой метод аппроксимации — сплайн-аппроксимация — отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.
Метод наименьших квадратов
Предположим, что требуется заменить некоторую величину и делается n измерений, результаты которых равны xi=x+ei (i=1, 2, …, n), где ei — это ошибки (или шум) измерений, а х — истинное значение. Метод наименьших квадратов утверждает, что наилучшее приближённое значение
есть такое число, для которого минимальна сумма квадратов отклонений от :Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n) требуется приблизить многочленом степени m<n
y(x)=a0+a1x+a2x2+…+amxm
Вычисленная кривая у(х) в некотором смысле даёт сложное множество значений уi. Метод наименьших квадратов утверждает, что следует выбирать многочлен, минимизирующий функцию.
-Для нахождения минимума дифференцируем - по каждой из неизвестных ak. В результате получим:
Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших значениях n задача плохо обусловлена. Эту трудность можно обойти, используя многочлены ортогональные с заданным весом на заданной системе точек, но к этому прибегают только в задачах, связанных с особенно тщательной статической обработкой эксперимента.
Полиномы Чебышева
Критерии согласия данного метода — минимизация максимальной ошибки.
Полиномы Чебышева определяются следующим образом: Tn(x)=cos(n×arccos(x))
Например: T0(x)=cos(0)=1,
T1(x)=cos(q)=x,
T2(x)=cos(2q)=cos2(q)-sin2(q)=2x2-1.
Можно было бы и дальше использовать тригонометрические соотношения для нахождения полиномов Чебышева любого порядка, но будет лучше установить для них рекурентное соотношение, связывающее Tn+1(x), Tn(x) и Tn-1(x):
Tn+1(x)=cos(nq+q)=cos(nq)cos(q)-sin(nq)sin(q),
Tn-1(x)=cos(nq-q)=cos(nq)cos(q)-sin(nq)sin(q).
Складывая эти неравенства, получим:
Tn+1(x)+Tn-1(x)=2cos(nq)cos(q)=2xTn(x);
Tn+1(x)=2xTn(x)-Tn-1(x).
Рис. 1
Применяя полученные формулы можно найти любой полином Чебышева. Например, Т3(x)=2xT2(x)-T1(x). Подставляя значения T2(х) и Т1(х) имеем Т3(х)=2х(2х2-1)-х=4х3-3х. Графически первые 10 полиномов Чебышева изображены ниже. Последующие полиномы по-прежнему колеблются между +1 и -1, причём период колебания уменьшаются с ростом порядка полинома.
Преобразования q=arccos(x) можно рассматривать как проекцию пересечения полукруга с множеством прямых, имеющих равные углы между собой (рис.1). Таким образом, множество точек xj, на котором система чебышевских многочленов Tn(x) ортогональна, таково:
, (j=0, 1, 2, …,N-1)Так как Tn(x) есть, по существу, cos(nq), то они являются равноколеблющимеся функциями, и так как они многочлены, то обладают всеми свойствами ортогональных многочленов.
Чебышев показал, что из всех многочленов Рn(x) степени n старшим коэффициентом 1, у многочлена
точная верхняя грань абсолютных значений на интервале -1£x£1 наименьшая. Так как верхняя грань Tn(x)=1, указанная верхняя грань равна .Практическое задание
На практике нам нужно было изучить приближение нашей функции полиномами Тейлора.
Как уже упоминалось выше, многочлены Тейлора легко вычислять, а так же превращать в степенные ряды. В этом мы и убедились на практике.
Ниже представлена таблица коэффициенты первых 12-и полиномов Чебышева, а также таблица коэффициентов перед полиномами Чебышева, выражающие первые 12 степеней х.
Эти данные мы получили, используя программы на страницах
В этих программах использовались следующие алгоритмы:
Преобразование коэффициентов полинома Чебышева в коэффициенты традиционного многочлена.