Суммируя левую и правую части этого соотношения от 0 до
N-1, получаем усложненную квадратурную формулу Симпсона (25)
Сответствующая ей формула с остаточным членом, полученная суммированием по частичным отрезкам
равенств вида (18), при условии, что , такова : (26)где
Введем краткие обозначения
(27)где
а также положим (28)где
Приближенные равенства
(29) (30)назовем сответственно формулами прямоугольников, трапеций и формулой Симпсона, опуская слова ‘’усложненная квадратурная’’.
Из виражений остаточных членов в (22), (24), (26) видно, что формулы (29) прямоугольников трапеций точны для многочленов первой степени, т.е. для линейных функций, а формула (30) Симпсона точна для многочленов третьей степени (для них остаточный член равен нулю ). Погрешность формул (29) имеет второй порядок относительно
(заведомо не лучше, если непрерывна на и не обращается в нуль), а формула Симпсона при соответствующей гладкости является формулой четвертого порядка точности. Поэтму для функций класса при малом формула Симпсона обычно дает более высокую точность, чем формула (29).Погрешность формулы прямугольников и формулы Симпсона при вычислении интеграла (1) в силу (22), (26) удовлетворяет неравенствам
(31) (32)Аналогичное неравенство имеет место и для погрешности формули трапеций.
Наряду с оценками погрешноси сверху полезны оценки снизу. В частности, для погрешности формулы прямоугольников оценка снизу, вытекающая из (22), такова:
(33)Пример. Исследовать погрешность квадратурных формул для интеграла
при .Имеем
о
наСогласно (31)-(33) получаем
Формулы прямоугольников трапеций в отдельности уступают при интегрировании гладких функций формуле Симпсона. Однако в паре они обладают ценным качеством, а именно, если
не изменяет знака на то формулы (29) дают двусторонние приближения для интеграла (1), так как согласно (22), (24) их остаточные члены имеют противоположные знаки.В рассмотренном примере
ПоэтомуВ данной ситуации естественно положить
Тогда
т.е. погрешность оценивается через самые приближенные значения интеграла.