МЕТОД ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА.
1. Основная идея метода. Может оказаться, что система
Ax=f(1)
имеет единственное решение, хотя какой-либо из угловых миноров матрицы А равен нулю. В этом случае обычный метод Гаусса оказывается непригодным, но может быть применен метод Гаусса с выбором главного элемента.
Основная идея метода состоит в том, чтобы на очередном шаге исключать не следующее по номеру неизвестное, а тонеизвестное, коэффициент при котором является наибольшим по модулю. Таким образом, в качестве ведущего элемента здесь выбирается главный, т.е. наибольший по модулю элемент. Тем самым, если , то в процессе вычислений не будет происходить деление на нуль.
Различные варианты метода Гаусса с выбором главного элемента проиллюстрируем на примере системы из двух уравнений
и к (3) применяется первый шаг обычного метода Гаусса. Указанный способ исключения называется методом Гаусса с выбором главного элемента по строке. Он эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация переменных.
Применяется также метод Гаусса с выбором главного элемента по столбцу. Предположим, что
и к новой системе применим на первом шаге обычный метод Гаусса. Таким образом, метод Гаусса с выбором главного элемента по столбцу эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация уравнений.
Иногда применяется и метод Гаусса с выбором главногоэлемента повсей матрице, когда в качестве ведущего выбирается максимальный по модулю элемент среди всех элементов матрицы системы.
2. Матрицы перестановок. Ранее было показано, что обычный метод Гаусса можно записать в виде
где
ОПРЕДЕЛЕНИЕ 1.Матрицей перестановок Р называется квадратная матрица, у которой в каждой строке и в каждом столбце только один элемент отличен от нуля и равен единице.
ОПРЕДЕЛЕНИЕ 2.Элементарной матрицей перестановок
Например, элементарными матрицами перестановок третьего порядка являются матрицы
Можно отметить следующие свойства элементарных матриц перестановок, вытекающие непосредственно из их определения.
1) Произведение двух (а следовательно, и любого числа) элементарных матриц перестановок является матрицей перестановок (не обязательно элементарной).
2) Для любой квадратной матрицы А матрица
3) Для любой квадратной матрицы А матрица
Применение элементарных матриц перестановок для описания метода Гаусса с выбором главного элемента по столбцу можно пояснить на следующем примере системы третьего порядка:
Система имеет вид (1), где
Максимальный элемент первого столбца матрицы А находится во второй строке. Поэтому надо поменять местами вторую и первую строки и перейти к эквивалентной системе
Систему (6) можно записать в виде
т.е. она получается из системы (4) путем умножения на матрицу
перестановок
Далее, к системе (6) надо применить первый шаг обычного метода исключения Гаусса. Этот шаг эквивалентен умножению системы (7) на элементарную нижнюю треугольную матрицу
В результате от системы (7) перейдем к эквивалентной системе
или в развернутом виде
Из последних двух уравнений системы (9) надо теперь исключить переменное
является элемент второй строки, делаем в (10) перестановку строк и тем самым от системы (9) переходим к эквивалентной системе
которую можно записать в матричном виде как
Таким образом система (12) получена из (8) применением элемен-тарной матрицы перестановок
Далее к системе (11) надо применить второй шаг исключения обычного метода Гаусса. Это эквивалентно умножению системы (11) на элементарную нижнюю треугольную матрицу
В результате получим систему
или
Заключительный шаг прямого хода метода Гаусса состоит в замене последнего уравнения системы (14) уравнением
что эквивалентно умножению (13) на элементарную нижнюю треугольную матрицу
Таким образом, для рассмотренного примера процесс исключения Гаусса с выбором главного элемента по столбцу записывается в
виде
По построению матрица
является верхней треугольной матрицей с единичной главной диагональю.
Отличие от обычного метода Гаусса состоит в том, что в качестве сомножителей в (16) наряду с элементарными треугольными матрицами
Покажем еще, что из (16) следует разложение
PA=LU, (17)
где L -нижняя треугольная матрица, имеющая обратную, P - матрица перестановок.
Для этого найдем матрицу
По свойству 2) матрица
Матрица
т.е.