gotoxy(32,2);
write(' x y a ');gotoxy(32,3);
write(' ',c:7:7,' ',yx[0]:7:7,' ',ay[0]:7:7,' ');for i:=0 to o-1 do begin
x[i]:=x[i]+h/2;
y[i,1]:=yx[i]+(h/2)*ay[i];
a[i,1]:=ay[i]+(h/2)*p[i];
ff[i]:=(k*x[i]-l[0]*y[i,1]-l[1]*a[i,1])/l[2];
xy[i]:=x[i]+h/2;
yx[i+1]:=yx[i]+h*a[i,1];
ay[i+1]:=ay[i]+h*ff[i];
x[i+1]:=x[i]+h/2;
p[i+1]:=(k*xy[i]-l[0]*yx[i+1]-l[1]*ay[i+1])/l[2];
end;
for i:=0 to o-1 do begin
gotoxy(32,4+i);
write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ',ay[I+1]:7:7,' ');end;
gotoxy(32,4+o);
write(' ');end;
if n=1 then begin
x[0]:=c;
yx[0]:=v[0];
p[0]:=(k*x[0]-l[0]*yx[0])/l[1];
for i:=0 to o-1 do begin
x[i]:=x[i]+h/2;
y[i,1]:=yx[i]+(h/2)*p[i];
xy[i]:=x[i]+h/2;
ff[i]:=(k*x[i]-l[0]*y[i,1])/l[1];
yx[i+1]:=yx[i]+h*ff[i];
x[i+1]:=x[i]+h/2;
p[i+1]:=(k*xy[i]-l[0]*yx[i+1])/l[1];
end;
gotoxy(32,1);
write(' ');gotoxy(32,2);
write(' x y ');gotoxy(32,3);
write(' ',c:7:7,' ',yx[0]:7:7,' ');for i:=0 to o-1 do begin
gotoxy(32,4+i);
write(' ',xy[i]:7:7,' ',yx[i+1]:7:7,' ');end;
gotoxy(32,o+4); write(' ');end;
lap1:readln;
pramo;
delay(10000);
clrscr;
end.
_
ЗАПУСК ПРОГРАММЫ НА ВЫПОЛНЕНИЕ
Программа находится в файле kursova1.pas, и имеет 2 модуля, в которых содержатся заставки. Модули находятся в файлах pram.tpu и kurs1_1.tpu.
Для запуска файла kursova1.pas в Turbo Pascal необходимо нажать F9. Появится первая заставка, далее нажать enter и ввести все необходимые начальные условия: порядок производной, коэффициенты при членах рада, отрезок и начальные значения у(х0). На экране выводится шаг вычисления и таблица с ответами. После нажатия enter выводится вторая заставка, после чего мы возвращаемся к тексту программы.
ОПИСАНИЕ ПРОГРАММЫ
1 – ввод данных, используемых в программе
2 – использование метки, очистка экрана, ввод требований, решение
дифференциального уравнения в зависимости от ввода начальных
условий
3 – присвоение начальных условий для дифференциального уравнения
третьего порядка
4 – вывод таблицы со значениями
5 – ввод формул метода Эйлера для уравнения третьего порядка
6 – присвоение начальных условий для решения дифференциального
уравнения второго порядка
7 – вывод таблицы для уравнения второго порядка
8 – формулы метода Эйлера для уравнения второго порядка
9 – начальные условия для дифференциального уравнения первого порядка
10 – формулы метода Эйлера для решения уравнения первого порядка
11 – вывод таблицы
12 – обращение к метке, задержка для просмотра результатов, очистка
экрана, конец программы.