Смекни!
smekni.com

Численный расчет дифференциальных уравнений (стр. 1 из 3)

Міністерство освіти України

ДАЛПУ

Кафедра автоматизації

технологічних процесів і приладобудування

КУРСОВА РОБОТА

з курсу “Математичне моделювання на ЕОМ”

на тему “Розв’язок диференціального рівняння

виду апу(п)п-1у(п-1)+…+а1у10у=кх при заданих

початкових умовах з автоматичним вибором кроку

методом Ейлера”

Виконала студентка групи БА-4-97

Богданова Ольга Олександрівна

Холоденко Вероніка Миколаївна

Перевірила Заргун Валентина Василівна

1998


Блок-схема алгоритма
Блок-схема алгоритма

начало

у/=f(x,y)

y(x0)=y0

x0, x0+a


h, h/2


k:=0


xk+1/2:=xk+h/2

yk+1/2:=yk+f(xk, yk)h/2

αk:=f(xk+1/2, yk+1/2)

xk+1:=xk+h

yk+1:=ykkh


нет k:=n

да

x0, y0,

x1, y1…

xn,yn


конец
ПОСТАНОВКА ЗАДАЧИ И МЕТОД РЕШЕНИЯ

Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0.

Таким образом, численные методы позволяют вместо нахождения функции

У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка

y/=f(x,y) (1)

с начальным условием

x=x0, y(x0)=y0 (2)

Требуется найти решение уравнения (1) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0, х1, х2,…, хn, где xi=x0+ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi)»yiвычисляются последовательно по формулам уi+hf(xi, yi) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00, у0), заменяется ломаной М0М1М2… с вершинами Мi(xi, yi) (i=0,1,2,…); каждое звено МiMi+1этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (1), которая проходит через точку Мi.

Если правая часть уравнения (1) в некотором прямоугольнике R{|x-x0|£a, |y-y0|£b}удовлетворяет условиям:


|f(x, y1)- f(x, y2)| £ N|y1-y2| (N=const),

|df/dx|=|df/dx+f(df/dy)| £ M (M=const),

то имеет место следующая оценка погрешности:

|y(xn)-yn| £ hM/2N[(1+hN)n-1], (3)

где у(хn)-значение точного решения уравнения(1) при х=хn, а уn- приближенное значение, полученное на n-ом шаге.

Формула (3) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагомh/2. Погрешность более точного значения уn*оценивается формулой

|yn-y(xn)|»|yn*-yn|.

Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

Модифицированный метод Эйлера более точен.

Рассмотрим дифференциальное уравнение (1) y/=f(x,y)

с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n

равных частей.На малом участке [x0,x0+h]

у интегральную кривую заменим прямой

Nk/ y=y(x) линией. Получаем точку Мккк).

МкМк/

yk+1

yk

хкхк1/2xk+h=xk1х

Через Мк проводим касательную: у=ук=f(xk,yk)(x-xk).

Делим отрезок (хкк1) пополам:

xNk/=xk+h/2=xk+1/2

yNk/=yk+f(xk,yk)h/2=yk+yk+1/2

Получаем точку Nk/. В этой точке строим следующую касательную:

y(xk+1/2)=f(xk+1/2, yk+1/2)=αk

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:

ук+1ккh

xk+1=xk+h

(4) αk=f(xk+h/2, yk+f(xk,Yk)h/2)

yk=yk-1+f(xk-1,yk-1)h