2. Если оператор А не непрерывен в точке 0, то в Е1 существует такая последовательность
Если Е и Е1 – нормированные пространства, то условие ограниченности оператора А, действующего из Е в Е1, можно сформулировать так: оператор А называется ограниченным, если он переводит любой шар в ограниченное множество.
В силу линейности оператора А это условие можно сформулировать так: оператор А ограничен, если существует С=const , что для любого
Определение 3. Наименьшее из чисел С, удовлетворяющих этому неравенству, называется нормой оператора А и обозначается
Теорема 2 [1]. Для любого ограниченного оператора А , действующего из нормированного пространства в нормированное
3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов
Определение 4. Пусть А и В – два линейных оператора, действующих из линейного топологического пространства Е в пространство Е1. Назовем их суммой А+В оператор С, ставящий в соответствие элементу
Можно проверить, что С=А+В – линейный оператор, непрерывный, если А и В непрерывны. Область определения DC оператора С есть пересечение
Если Е и Е1 – нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причем
Действительно, для любых х
Определение 5. Пусть А и В – линейные операторы, причем А действует из Е в Е1, а В действует из Е1 в Е2 . Произведением ВА операторов А и В называется оператор С, ставящий в соответствие элементу
Область определения DC оператора С=ВА состоит из тех х
Если А и В – ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА – ограничен, причем
Действительно,
Сумма и произведение трех и более операторов определяются последовательно. Обе эти операции ассоциативны.
Произведение оператора А на число к (обозначается кА) определяется как оператор, который элементу х ставит в соответствие элемент кАх.
Совокупность Z(E,E1) всех непрерывных линейных операторов, определенных на всем Е и отображающих Е в Е1 ( где Е и Е1
4. Обратный оператор
Пусть А – линейный оператор, действующий из Е в Е1 , и DA область определения, а RA – область значений этого оператора.
Определение 6. Оператор А называется обратимым, если для любого у
Если А обратим, то любому элементу у
Теорема 3 [1]. Оператор А-1, обратный линейному оператору А, также линеен.
Доказательство.
Достаточно проверить выполнение равенства
Положим Ах1=у1 и Ах2=у2, в силу линейности А имеем
По определению обратного оператора А-1у1=х1 и А-1у2=х2, умножим оба равенства соответственно на
С другой стороны из равенства (*) следует
Теорема доказана.
Теорема 4 [3]. (Теорема Банаха об обратном операторе)
Пусть А – линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор А-1 ограничен.
Теорема 5 [3]. Пусть Е – банахово пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный оператор, отображающий Е в себя, что
Доказательство.
Так как
Теорема доказана.
5. Спектр оператора. Резольвента.
Всюду, где речь идет о спектре оператора, считаем, что оператор действует в комплексном пространстве.
В теории операторов и ее применениях первостепенную роль играет понятие спектра оператора. Рассмотрим это понятие сначала применительно к операторам в конечномерном пространстве.
Пусть А – линейный оператор в n-мерном пространстве Еn . Число
Иначе говоря,
уравнение
существует ограниченный оператор