2. Если оператор А не непрерывен в точке 0, то в Е1 существует такая последовательность
, что Ахn не стремится к 0. При этом последовательность ограничена, а последовательность не ограничена. Итак, если оператор А не непрерывен, то А и не ограничен. Утверждение доказано.Если Е и Е1 – нормированные пространства, то условие ограниченности оператора А, действующего из Е в Е1, можно сформулировать так: оператор А называется ограниченным, если он переводит любой шар в ограниченное множество.
В силу линейности оператора А это условие можно сформулировать так: оператор А ограничен, если существует С=const , что для любого
Е : .Определение 3. Наименьшее из чисел С, удовлетворяющих этому неравенству, называется нормой оператора А и обозначается
.Теорема 2 [1]. Для любого ограниченного оператора А , действующего из нормированного пространства в нормированное
.3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов
Определение 4. Пусть А и В – два линейных оператора, действующих из линейного топологического пространства Е в пространство Е1. Назовем их суммой А+В оператор С, ставящий в соответствие элементу
элемент у=Ах+Вх, .Можно проверить, что С=А+В – линейный оператор, непрерывный, если А и В непрерывны. Область определения DC оператора С есть пересечение
областей определения операторов А и В.Если Е и Е1 – нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причем
(2)Действительно, для любых х
, следовательно, выполняется неравенство (2).Определение 5. Пусть А и В – линейные операторы, причем А действует из Е в Е1, а В действует из Е1 в Е2 . Произведением ВА операторов А и В называется оператор С, ставящий в соответствие элементу
элемент из Е2.Область определения DC оператора С=ВА состоит из тех х
DA , для которых Ах DB. Ясно , что оператор С линеен. Он непрерывен, если А и В непрерывны.Если А и В – ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА – ограничен, причем
(3)Действительно,
, следовательно, выполняется (3).Сумма и произведение трех и более операторов определяются последовательно. Обе эти операции ассоциативны.
Произведение оператора А на число к (обозначается кА) определяется как оператор, который элементу х ставит в соответствие элемент кАх.
Совокупность Z(E,E1) всех непрерывных линейных операторов, определенных на всем Е и отображающих Е в Е1 ( где Е и Е1
– фиксированные линейные нормированные пространства), образует, по отношению к введенным операциям сложения и умножения на число, линейное пространство. При этом Z(E, E1) – нормированное пространстово (с тем определением нормы оператора, которое было дано выше).4. Обратный оператор
Пусть А – линейный оператор, действующий из Е в Е1 , и DA область определения, а RA – область значений этого оператора.
Определение 6. Оператор А называется обратимым, если для любого у
RA уравнение Ах=у имеет единственное решение.Если А обратим, то любому элементу у
RA можно поставить в соответствие единственный элемент х DA , являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным к А и обозначается А-1.Теорема 3 [1]. Оператор А-1, обратный линейному оператору А, также линеен.
Доказательство.
Достаточно проверить выполнение равенства
.Положим Ах1=у1 и Ах2=у2, в силу линейности А имеем
(*)По определению обратного оператора А-1у1=х1 и А-1у2=х2, умножим оба равенства соответственно на
и : .С другой стороны из равенства (*) следует
, следовательно, .Теорема доказана.
Теорема 4 [3]. (Теорема Банаха об обратном операторе)
Пусть А – линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор А-1 ограничен.
Теорема 5 [3]. Пусть Е – банахово пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный оператор, отображающий Е в себя, что
. Тогда оператор (I-A)-1 существует, ограничен и представляется в виде .Доказательство.
Так как
, то ряд сходится. А так как для всех , то ряд также сходится. Пространство Е полно, значит, из сходимости ряда вытекает, что сумма ряда представляет собой ограниченный линейный оператор. Для любого n имеем: , переходя к пределу и учитывая, что , получаем , следовательно .Теорема доказана.
5. Спектр оператора. Резольвента.
Всюду, где речь идет о спектре оператора, считаем, что оператор действует в комплексном пространстве.
В теории операторов и ее применениях первостепенную роль играет понятие спектра оператора. Рассмотрим это понятие сначала применительно к операторам в конечномерном пространстве.
Пусть А – линейный оператор в n-мерном пространстве Еn . Число
называется собственным значением оператора А , если уравнение имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения – регулярными.Иначе говоря,
есть регулярная точка, если оператор обратим. При этом оператор -1 , как и любой оператор в конечномерном пространстве, ограничен, поэтому в конечномерном пространстве существует две возможности:уравнение
имеет ненулевое решение, т. е. есть собственное значение для А , оператор -1 при этом не существует;существует ограниченный оператор
-1, т.е. есть регулярная точка.