Найдем выражение для нормы и спектрального радиуса оператора взвешенного сдвига через его веса.
Вспомним, что сдвиг S1 – изометрический оператор, значит, не изменяет нормы элемента:
для любого .Поэтому норма оператора А равна норме соответствующего диагонального оператора: для любого и . Найдем норму диагонального оператора Pln = , где – некоторая ограниченная последовательность комплексных чисел. Рассмотрим произвольную последовательность с единичной нормой: . При этом в базисе элемент имеет разложение . Подействуем на элемент х оператором Р: . При этом . Отсюда следует, что . Покажем, что выполняется также и обратное неравенство. Если для последовательности достигается, т.е. при некотором , то возьмем элемент : , . Если же не достигается, то можно взять подпоследовательность , тогда . Это говорит о том, что не может быть . Итак, и . Мы получили, что норма оператора взвешенного сдвига равна точной верхней грани модулей его весов.Чтобы найти спектральный радиус оператора взвешенного сдвига, найдем нормы его степеней. Вычислим степени оператора А: Aln =
, A2ln = ,A3ln = , и так далее. Следовательно, Ак можно представить в виде произведения изометрии (к-й степени оператора сдвига) и диагонального оператора, у которого n-й диагональный член равен произведению к последовательных чисел , начиная с . Значит, , отсюда, .8. Операторы сдвига в пространстве функции на единичной окружности
Рассмотрим единичную окружность на комплексной плоскости, т. е. всевозможные комплексные числа
, по модулю равные 1. Рассмотрим комплексную последовательность и составим ряд . Если он сходится для всех , таких, что , то – функция от переменной , определенная на единичной окружности. Заметим, что для последовательностей из пространства , таких, что ряд сходящийся, ряд сходится для всех , таких, что . Итак, существует взаимно однозначное соответствие между пространством и множеством A функций на единичной окружности, представимых в виде суммы обобщенного степенного ряда с абсолютно сходящимся рядом коэффициентов. Рассмотрим, в какой оператор переходит при этом оператор сдвига U. Обозначим этот оператор . Пусть и – соответствующая функция. Тогда . Итак, в пространстве А оператору сдвига соответствует оператор умножения на функцию .Рассмотрим теперь оператор
взвешенного сдвига с весами . Его область определения – не все пространство , а только те последовательности , для которых сходится ряд . При этом . Таким образом, в пространстве А оператору сдвига соответствует оператор дифференцирования.Часть 2. Нестандартное расширение оператора сдвига
1. Нестандартное расширение поля действительных чисел
Поле R действительных чисел является расширением поля рациональных чисел с помощью определенной конструкции. Например, можно рассматривать действительные числа как классы фундаментальных последовательностей рациональных чисел.
Существует некоторая конструкция и для расширения поля R. При этом получается новое поле с линейным порядком, но без выполнения аксиомы Архимеда:
. В новом поле существуют положительные элементы, меньшие любой дроби , где . Такие элементы называются бесконечно малыми. Также существуют положительные элементы, большие любого , они называются бесконечно большими. Это поле называется нестандартным расширением поля действительных чисел и обозначается *R.