Смекни!
smekni.com

Оператор сдвига (стр. 8 из 8)

Можно доказать также более общий факт.

Теорема 13. Любая точка единичной окружности является почти собственным числом оператора двухстороннего сдвига, соответствующим некоторому почти собственному вектору.

Доказательство. В пространстве *l2(-

,
) рассмотрим следующую последовательность:
=
, где
=
и
– некоторый бесконечно большой номер. Найдем норму этого элемента:
. Возьмем
и рассмотрим разность
. Так как

Ux=

,
,

то

. Найдем норму этой разности:
, т. е.
.

Заключение

В работе показано, что нестандартное расширение оператора сдвига сохраняет многие свойства стандартного сдвига, в частности, свойство ограниченности и норму. Но также имеются и отличия, например, существование у нестандартного оператора сдвига почти собственных векторов.

Список литературы

Гельфанд И.М. Лекции по линейной алгебре.–М.: Мир, 1964.

Девис Д. Прикладной нестандартный анализ.

Колмогоров А.Н. Элементы теории функций и функционального анализа [Текст]./ А.Н. Колмогоров, С.В. Фомин. – М.: Просвещение, 1968.

Халмош П. Гильбертово пространство в задачах [Текст]. – М.: Просвещение, 1972.