а) Докажите, что рассматриваемый вектор (x, y) можно представить в виде суммы различных образующих (или он сам — образующий) тогда и только тогда, когда величина k(x, y) = x + y – (x–y)2 неотрицательна.
б) Докажите, что число N(x, y) различных (с точностью до порядка) представлений вектора (x, y) в виде суммы различных образующих зависит только от числа k = k(x, y). Найдите N(13, 18).
Решение задачи начнём с того, что найдём общий вид целочисленных решений неравенства k(x, y) ≥ 0. Числа x+y и x–y имеют одинаковую чётность, поэтому k(x, y) является чётным при любых целых x, y. Следовательно, для любого целого m≥0 достаточно найти целочисленные решения уравнения x + y – (x–y)2 = 2m. Положим x–y = q. Тогда x+y = 2m+q2. Из этих двух равенств немедленно получаем:
1 + 2 + ... + (q–1) + m + q = m + | q(q + 1) 2 | ; |
0 + 1 + ... + (q–2) + m + (q–1) = m + | q(q – 1) 2 | . |
Поэтому формулы
(x, y) = (1, 0) + (2, 1) + ... + (q–1, q–2) + (m+q, m+q–1) при q>0
и
(m, m) = (1, 0) + (m–1, m) при q=0, m>0
дают представления (x, y) в виде суммы различных образующих.
Доказать необходимость условия тоже несложно. Пусть
(x, y) = (r1, r1–1) + ... + (ra, ra–1) + (s1, s1+1) + ... + (sb, sb+1)
— представление вектора (x, y) с x ≥ y в виде суммы различных образующих, где
r1 > r2 > ... > ra > 0,s1 > s2 > ... > sb ≥ 0. | (4) |
Для такого вектора
x = r1 + ... + ra + s1 + ... + sb,
y = r1 + ... + ra – a + s1 + ... + sb + b,
поэтому x–y = a–b. Положим q = x–y и
m = (r1–q) + (r2–(q–1)) + ... + (rq–1) + rq+1 + ... + ra + s1 + ... + sb =
= x – | q(q + 1) 2 | = | x + y 2 | + | x – y 2 | – | q(q + 1) 2 | = | x + y 2 | – | q² 2 |
(здесь мы снова воспользовались формулой суммы арифметической прогрессии). Из неравенств (4) следует, что rq ≥ ra ≥ 1, rq–1 ≥ 2, rq–2 ≥ 3, ... и вообще rk ≥ q–k+1. Поэтому m ≥ 0, т.е. (x, y) — вектор вида (3), что и требовалось доказать.
В геометрических терминах утверждение б) означает, что число N(x, y) зависит лишь от номера m параболы и не зависит от номера q точки на параболе.
Пусть T(m, q) — множество представлений вектора (3) в виде суммы различных образующих и t(m, q) — число таких представлений. Задача будет решена, если мы докажем, что для любого целого q имеет место равенство t(m, q) = t(m, q–1) (это и значит, что t(m, q), а вместе с ним N(x, y), не зависит от q). Мы отождествили выше множество T(m, q) с множеством таких пар последовательностей, удовлетворяющих неравенствам (4), что
r1 + ... + ra + s1 + ... + sb = m + | q(q + 1) 2 | при q = a–b. |
Такую пару мы будем записывать в виде (r1, ..., ra | s1, ..., sb).
Рассмотрим отображение φ множества T(m, q) в множество T(m, q–1), заданной формулой
φ(r1, ..., ra | s1, ..., sb) = |
(r1–1, ..., ra–1 | s1+1, ..., sb+1, 0), | если ra > 1, |
(r1–1, ..., ra–1–1 | s1+1, ..., sb+1), | если ra = 1. |
ψ(r1, ..., ra | s1, ..., sb) = |
(r1+1, ..., ra+1, 1 | s1–1, ..., sb–1), | если sb > 0, |
(r1+1, ..., ra+1 | s1–1, ..., sb–1–1), | если sb = 0. |
∞ | ∞ | ||
∏ | (1 + uk–1 vk)(1 + uk vk–1) = | ∑ | N(x, y)ux vy. |
k=1 | x,y=0 |
Поскольку N(x, y) = t(m, q), где x = m + q(q+1)/2, y = m + q(q–1)/2, равенство можно продолжить:
∞ | ∞ | |||
= | ∑ | ∑ | t(m, q)um vm | uq(q+1)/2 vq(q–1)/2. |
q=–∞ | m=0 |
Воспользуемся теперь тем, что t(m, q) = p(m) и продолжим равенство:
∞ | ∞ | |||
= | ∑ | ∑ | p(m)um vm | uq(q+1)/2 vq(q–1)/2. |
q=–∞ | m=0 |
Ряд, стоящий в скобках, — производящая функция чисел разбиения p(m), которую мы знаем (формула (1)), поэтому продолжаем:
∞ | ∞ | |||
= | ∏ | (1 – uk vk)–1 | ∑ | uq(q+1)/2 vq(q–1)/2. |
k=1 | q=–∞ |
Теперь приравняем левую часть первого и правую часть последнего равенства, умножив обе части на ∏ (1–uk vk). Получим окончательный результат:
∞ | ∞ | ||
∏ | (1 + uk–1 vk)(1 + uk vk–1)(1 – uk vk) = | ∑ | uq(q+1)/2 vq(q–1)/2. |
k=1 | q=–∞ |
Это тождество — цель наших преобразований. Оно называется формулой Гаусса–Якоби. Из этого замечательного тождества с двумя переменными можно получить много разных тождеств с одной переменной.
Упражнение 9. Подставьте в формулу Гаусса–Якоби u = –t, v = –t2 и получите пентагональную теорему Эйлера.
Теперь подставим в формулу Гаусса–Якоби u = v = – t. В левой части получится:
∞ | ∞ | ∞ | |||
∏ | (1 – t2k–1)2 (1 – t2k) = | ∏ | (1 – t2k–1) | ∏ | (1 – tk). |
k=1 | k=1 | k=1 |
Заменяя произведение ∏ (1 – t2k–1) на ∏ (1 + tk)–1 по формуле (2), мы преобразуем левую часть в
(1 – t)(1 – t2)(1 – t3) ... (1 + t)(1 + t2)(1 + t3) ... | . |
Правая часть формулы Гаусса–Якоби при подстановке u = v = – t превращается в
∞ | |
∑ | (–1)q² tq², |
q=–∞ |
и мы получаем следующую формулу:
(1 – t)(1 – t2)(1 – t3) ... (1 + t)(1 + t2)(1 + t3) ... | = 1 – 2t + 2t4 – 2t9 + 2t16 – ... |
Подстановка u = t, v = 1 в формулу Гаусса–Якоби аналогичным образом приводит к формуле:
(1 – t2)(1 – t4)(1 – t6) ... (1 – t)(1 – t3)(1 – t5) ... | = 1 + t + t3 + t6 + t10 + ... |
Эти две формулы получены Гауссом. Нечего и говорить, что это удивительно красивые формулы!