Пусть

- любой элемент. Имеем :

. Следовательно,

.
10Циклические группы.
Пусть G произвольная группа и

- любой ее элемент. Если некоторая подгруппа

содержит g , то она содержит и все степени

. С другой стороны, множество

очевидно является подгруппой G .
Определение.
Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической.
Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g.
Примеры
1. Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1.
2. Группа

поворотов плоскости на углы кратные 2p¤n является циклической с образующим элементом

- поворотом на угол 2p¤n. Здесь n = 1, 2, ...
Теорема о структуре циклических групп.
Всякая бесконечная циклическая группа изоморфна Z. Циклическая группа порядка n изоморфна Z / nZ .
Доказательство.
Пусть G = Z(g) - циклическая группа. По определению, отображение

- сюръективно. По свойству степеней

и потому j - гомоморфизм. По теореме о гомоморфизме

. H = KerjÌZ.Если H - тривиальная подгруппа, то

. Если H нетривиальна, то она содержит положительные числа. Пусть n - наименьшее положительное число входящее в H. Тогда nZÌH.Предположим, что в H есть и другие элементы то есть целые числа не делящееся на n нацело и k одно из них. Разделим k на n с остатком: k = qn +r , где 0 < r < n. Тогда r = k - qn Î H , что противоречит выбору n. Следовательно, nZ = H и теорема доказана.
Отметим, что

»Z / nZ .
Замечание.
В процессе доказательства было установлено, что каждая подгруппа группы Z имеет вид nZ , где n = 0 ,1 , 2 ,...
Определение.
Порядком элемента

называется порядок соответствующей циклической подгруппы Z( g ) .
Таким образом, если порядок g бесконечен, то все степени

- различные элементы группы G. Если же этот порядок равен n, то элементы

различны и исчерпывают все элементы из Z( g ), а

N кратно n . Из теоремы Лагранжа вытекает, что
порядок элемента является делителем порядка группы.Отсюда следует, что для всякого элемента g конечной группы G порядка n имеет место равенство

.
Следствие.
Если G - группа простого порядка p, то

- циклическая группа.
В самом деле, пусть

- любой элемент отличный от нейтрального. Тогда его порядок больше 1 и является делителем p, следовательно он равен p. Но в таком случае G = Z( g )»

.
Теорема о подгруппах конечной циклической группы.
Пусть G - циклическая группа порядка n и m - некоторый делитель n. Существует и притом только одна подгруппа HÌG порядка m. Эта подгруппа циклична.
Доказательство.
По предыдущей теореме G»Z / nZ. Естественный гомоморфизм

устанавливает взаимно однозначное соответствие между подгруппами HÌG и теми подгруппами KÌZ , которые содержат Kerp = nZ . Но, как отмечалось выше, всякая подгруппа K группы Z имеет вид kZ Если kZÉnZ , то k - делитель n и p(k) - образующая циклической группы H порядка m = n /k. Отсюда и следует утверждение теоремы.
Верна и обратная теорема: если конечная группа G порядка n обладает тем свойством, что для всякого делителя m числа n существует и притом ровно одна подгруппа H порядка m, то G - циклическая группа.
Доказательство.
Будем говорить, что конечная группа G порядка N обладает свойством (Z), если для всякого делителя m числа N существует и притом только одна подгруппа HÌG порядка m. Нам надо доказать, что всякая группа, обладающая свойством (Z) циклическая. Установим прежде всего некоторые свойства таких групп.
Лемма.
Если G обладает свойством (Z), то
1. Любая подгруппа G нормальна.
2. Если x и y два элемента такой группы и их порядки взаимно просты, то xy = yx.
3. Если H подгруппа порядка m такой группы G порядка N и числа m и N/m взаимно просты, то H обладает свойством (Z).
Доказательство леммы.
1. Пусть HÌG . Для любого

подгруппа

имеет тот же порядок, что и H. По свойству (Z)

то есть подгруппа H нормальна.
2. Пусть порядок x равен p, а порядок y равен q. По пункту 1) подгруппы Z(x) и Z(y) нормальны. Значит, Z(x)y = yZ(x) и xZ(y) = Z(y)x и потому для некоторых a и b

. Следовательно,

. Но, поскольку порядки подгрупп Z(x) и Z(y) взаимно просты, то

. Следовательно,

и потому xy = yx.
4. Используя свойство (Z) , выберем в G подгруппу K порядка N/m. По 1) эта подгруппа нормальна, а поскольку порядки H и K взаимно просты, эти подгруппы пересекаются лишь по нейтральному элементу. Кроме того по 2) элементы этих подгрупп перестановочны между собой. Всевозможные произведения hk =kh, где hÎH, kÎK попарно различны, так как

=e поскольку это единственный общий элемент этих подгрупп. Количество таких произведений равно m N/m =

и, следовательно, они исчерпывают все элементы G. Сюръективное отображение

является гомоморфизмом

с ядром K. Пусть теперь число s является делителем m. Выберем в G подгруппу S порядка s. Поскольку s и N/m взаимно просты,

и потому

- подгруппа порядка s. Если бы подгрупп порядка s в H было несколько, то поскольку все они были бы и подгруппами G условие (Z) для G было бы нарушено. Тем самым мы проверили выполнение условия (S) для подгруппы H.
Доказательство теоремы.
Пусть

- разложение числа N в произведение простых чисел. Проведем индукцию по k. Пусть сначала k = 1, то есть

. Выберем в G элемент x максимального порядка

. Пусть y любой другой элемент этой группы. Его порядок равен

, где u £ s. Группы

и

имеют одинаковые порядки и по свойству (Z) они совпадают. Поэтому

и мы доказали, что x- образующий элемент циклической группы G. Пусть теорема уже доказана для всех меньших значений k. Представим N в виде произведения двух взаимно простых множителей N = pq (например,

) . Пусть H и K подгруппы G порядка p и q. Использую 3) и предположение индукции , мы можем считать, что H = Z(x), K = Z(y), причем xy = yx . Элемент xy имеет порядок pq = N и, следовательно, является образующим элементом циклической группы G.
11. Некоторые теоремы о подгруппах конечных групп.
Теорема Коши.
Если порядок конечной группы делится на простое число p, то в ней имеется элемент порядка p.