Смекни!
smekni.com

Оптика (стр. 3 из 4)

Выпуклые линзы бывают (рис. 15): двояковыпуклые (а), плосковыпуклые (б), вогнуто-выпуклые (в). Схематически тонкие собирающие линзы изображены на рис. 15, г.

Вогнутые линзы бывают (рис. 16): двояковогнутые (а), плосковогнутые (б), выпукло-вогнутые (в). Схематическое изображение рассеивающих тонких линз приведено на рис. 16, г. Обычно путают названия линз вогнуто-выпуклой и выпукло-вогнутой. Чтобы этого избежать, надо хорошо себе представить, что линза, изображенная на рис. 15, в, выпуклая (середина толще краев), а изображенная на рис. 16, в – вогнутая (середина тоньше краев). Первое же слово в названии обозначает одну из ограничивающих поверхностей, а не выпуклость или вогнутые линзы.

Рис.15. Рис.16.

Изображение точки S в линзе будет точка пересечения всех преломленных лучей или их продолжений. В первом случае изображение действительное, во втором – мнимое. Как всегда, чтобы найти точку пересечения всех лучей, достаточно построить любые два. Мы можем это сделать, пользуясь вторым законом преломления. Для этого надо измерить угол падения произвольного луча, сосчитать по формуле (2) угол преломления, построить преломленный луч, который под каким-то углом упадет на другую грань линзы. Измерив этот угол падения, надо вычислить по формуле (2) новый угол преломления и построить выходящий луч. Как видите, работа достаточно трудоемкая, поэтому обычно ее избегают. По известным свойствам линз можно построить три луча без всяких вычислений. Луч, падающий параллельно какой-либо оптической оси, после двойного преломления пройдет через действительный фокус или его продолжения пройдет через мнимый фокус. По закону обратимости луч, падающий по направлению на соответствующий фокус, после двойного преломления выйдет параллельно определенной оптической оси. Наконец, через оптический центр линзы луч пройдет, не отклоняясь.

На рис. 17 построено изображения точки S в собирающей линзе, на рис. 18 – в рассеивающей. При таких построениях изображают главную оптическую ось и на ней показывают фокусные расстояния F (расстояния от главных фокусов или от фокальных плоскостей до оптического центра линзы) и двойные фокусные расстояния (для собирающих линз). Затем ищут точку пересечения преломленных лучей (или их продолжений), используя любые два из вышеперечисленных.

Обычно вызывает затруднение построение изображения точки, расположенной на главной оптической оси. Для такого построения нужно взять любой луч, который будет параллелен какой-то побочной оптической оси (пунктир на рис. 19). После двойного преломления он пройдет через побочный фокус, который лежит в точке пересечения этой побочной оси и фокальной плоскости. В качестве второго луча удобно использовать луч, идущий без преломления вдоль главной оптической оси.

Рис.17. Рис.18.

Рис.19.

На рис. 20 изображены две собирающие линзы. Вторая «лучше» собирает лучи, ближе их сводит, она «сильнее». Оптической силой линзы называется величина, обратная фокусному расстоянию:

. (6)

Выражается оптическая сила линзы в диоптриях (дптр).

Рис.20.

Одна диоптрия – оптическая сила такой линзы, фокусное расстояние которой 1м.

У собирающих линз положительная оптическая сила, у рассеивающих – отрицательная.

Построение изображения предмета в собирающей линзе сводится к построению его крайних точек. В качестве предмета выберем стрелку АВ (рис. 21). Изображение точки А построено, как на рис. 17, точка В1 может быть найдена, как на рис 19. Введем обозначение (аналогичные введенным при рассмотрении зеркал): расстояние от предмета до линзы |BO| = d; расстояние от предмета до линзы изображения |BO1| = f, фокусное расстояние |OF| = F. Из подобия треугольников А1В1О и АВО (по равным острым – вертикальным – углам прямоугольные треугольники подобна) |A1B1|/|AB = f/d. ИЗ подобия треугольников A1B1F и DOF (по тому же признаку подобия) A1B1|/|AB = (f – F)/F. Следовательно,

или fF = df – dF.

Разделив уравнение почленно на dFf и перенеся отрицательный член в другую сторону равенства, получим

. (7)

Мы вывели формулу линзы, аналогичную формуле зеркала.

В случае рассеивающей линзы (рис. 22) «работает» ближний мнимы фокус. Обратите внимание на то, сто точка А1 является тоской пересечения продолжения преломленных лучей, а не точкой пересечения преломленного луча FD и падающего луча AO.

Рис.21.

Рис.22.

Для доказательства рассмотрите луч, падающий из точки А по направлению на дальний фокус. После двойного преломления он выйдет из линзы параллельно главной оптической оси, так что его продолжение пройдет через точку А1. Изображение точки В может быть построено аналогично рис. 19. ИЗ подобия соответствующих треугольников |A1B1|/|AB| = f/d; |A1B1|/|AB| = (F – f)/F; fF = dF – – df или

.

Эту формулу рассеивающей линзы можно получить из (8). Для этого условимся считать положительными величины d (от предмета до линзы), f (от линзы до изображения) и F (от линзы до фокуса), если они направлены в сторону падающих лучей. Тогда в формуле (8) для собирающей линзы все члены положительны, для рассеивающей – расстояние от предмета до линзы положительно, d > 0, а расстояния от линзы до изображения и до фокуса отрицательны (f < 0, F < 0). Если перейти к абсолютным значениям расстояний, то получим

или

– в соответствии с выделенной формулой.

Линейным увеличением линзы называется число, показывающее, во сколько раз линейные размеры изображения больше линейных размеров предмета. Из подобия рассмотренных треугольников имеем

K = |A1B1|/|AB| = f/d (8)

Можно провести исследования формулы линзы, аналогичное исследованию формулы зеркала.

Как изменится изображение предмета, если его половина линзы разбилась? Изображение станет менее интенсивным, но ни его форма, ни расположение не изменятся. Аналогично изображение предмета в любом кусочке линзы или зеркала.

Оптические приборы

§5. Фотоаппарат.

Разберем схему и принцип работы некоторых широко распространенных оптических приборов.

Фотоаппарат – прибор, важнейшей частью которого является собирательная система линз – объектив. При обычном любительском фотографировании предмет расположен за двойным фокусным расстоянием, поэтому изображение будет между фокусом и двойным фокусным расстоянием, действительное, уменьшенное, перевернутое (рис. 23).

Рис.23.

На место этого изображения помещается фотопленка или фотопластинка (покрытые светочувствительной эмульсией, содержащей бромистое серебро), на некоторое время открывается объектив – пленка экспонируется. На ней появляется скрытое изображение. Попадая в специальной раствор – проявитель, «засвеченные» молекулы бромистого серебра распадаются, бром уносится в раствор, а серебро выделяется в виде темного налета на засвеченных частях пластинки или пленки; чем больше света попало при экспозиции на данное место пленки, тем темнее оно станет. После проявления и промывания необходимо изображение закрепить, для чего его помещают в раствор – закрепитель, в котором растворяется и уносится с негатива не засвеченное бромистое серебро. Получается изображение того, что было перед объективом, с перестановкой оттенков – светлые части стали темными и наоборот (негатив).

Для получения фотографии – позитива – необходимо через негатив осветить на некоторое время фотобумагу, покрытую таким же бромистым серебром. После ее проявления и закрепления получится негатив с негатива, т. е. позитив, в котором светлые и темные части будут соответствовать светлым и темным частям предмета.

Для получения качественного изображения большое значение имеет наводка на резкость – совмещение изображения и пленки или пластинки. Для этого у старых фотоаппаратов делалась подвижной задняя стенка, вместо светочувствительной пластинки вставлялась матовая стеклянная; двигая последнюю, на глаз устанавливали резкое изображение. Затем заменяли стеклянную пластинку светочувствительной и производили фотосъемку.