x2c2-2a2xc+a2=a2(x2-2xc+c2+y2)
x2(c2-a2)-a2y2=a2(c2-a2)
c2-a2=b2
x2b2-a2y2=a2b2
- каноническое ур-е гиперболыПАРАБОЛА.
Определение: ГМТ на плоскости расстояние от которых до фиксированной точки на плоскости, называемой фокусом, равно расстоянию до фиксированной прямой этой плоскости называемой директрисой.
Каноническое уравнение:
Пусть фокус параболы находится на оси ОХ, а директриса расположение перпендикулярно оси ОХ, причем они находятся на одинаковом расстоянии от начала координат.
|DF|=p, М – произвольная точка параболы; К – точка на директрисе; МF=r; MK=d;
r=sqrt((x-p/2)2+y2); d=p/2+x
Приравниваем и получаем:
y2=2px - каноническое уравнение параболы
ЭКСЦЕНТРИСИТЕТ И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ.
1. Определение: эксцентриситет – величина равная отношению с к а.
е=с/а
е эллипсв <1 (т.к. а>c)
е гиперболы >1 (т.к. с>a)
Определение: окружность – эллипс у которого а=b, с=0, е=0.
Выразим эксцентриситеты через а и b:
е эллипса является мерой его “вытянутости”
е гиперболы характеризует угол раствора между асимптотами
2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости a перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е<a)
D1: x= - a/e
D2: x= a/e
р=а(1-е2)/е – для эллипса
р=а(е2-1)/е – для гиперболы
ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.
Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы).
Доказательство: для эллипса.
r1/d1=e
x£|a|, xe+a>0r1=xe+a
d1 – расстояние от М(x,y) до прямой D1
xcos180+ysin180-p=0
x=-p
x=-a/e
бм=-x-a/e
d1=-бм (минус, т.к. прямая и точка по одну стороно о начала коорд.)
Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если <1, гиперболу, если >1, параболу, если =1.
ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.
Пусть задан эллипс, парабола или правая ветвь гиперболы.
Пусть задан фокус этих кривых. Поместим полюс полярной системы в фокус кривой, а полярную ось совместим с осью симметрии, на которой находится фокус.
r= r
d=p+rcosj
e=r/p+rcosj
- полярное уравнение эллипса, параболы и правой ветви гиперболы.КАСАТЕЛЬНАЯ К КРИВОЙ 2-ГО ПОРЯДКА.
Пусть задан эллипс в каноническом виде. Найдем уравнение касательной к нему, проходящей через М0(x0;y0) – точка касания, она принадлежит эллипсу значит справедливо:
у-у0=y’(x0)(x-x0)
Рассмотрим касательную к кривой
следовательноya2y0-a2y02+b2x0x-b2x02=0
- уравнение касательной к эллипсу. - уравнение касательной к гиперболе. - уравнение касательной к параболе.ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ НА ПЛОСКОСТИ.
Преобразование на плоскости есть применение преобразований параллельного переноса и поворота.
Пусть две прямоугольные системы координат имеют общее начало. Рассмотрим все возможные скалярные произведения базисных векторов двумя способами:
(е1;е1’)=cos u
(е1;е2’)=cos (90+u)= -sin u
(е2;е1’)=cos (90-u)=sin u
(е2;е2’)=cos u
Базис рассматривается ортонормированный:
(е1;е1’)=(е1, a11е1+a12е2)= a11
(е1;е2’)= (е1, a21е1+a22е2)= a21
(е2;е1’)= a12
(е2;е2’)= a22
Приравниваем:
a11=cos u
a21= - sin u
a12=sin u
a22=cos u
Получаем:
x=a+x’cos u – y’sin u
y=b+x’sin u – y’cos u - формулы поворота системы координат на угол u.
------------
x=a+x’
y=b+y’ - формулы параллельного переноса
ИНВАРИАНТЫ УРАВНЕНИЯ ЛИНИЙ 2-ГО ПОРЯДКА.
Определение: Инвариантой ур-я (1) линии второго порядка относительно преобразования системы координат, называется функция зависящая от коэффициентов ур-я (1) и не меняющая своего значения при преобразовании системы координат.
Теорема: инвариантами уравнения (1) линии второго порядка относительно преобразования системы координат являются следующие величины: I1; I2; I3
Вывод: при преобразовании системы координат 3 величины остаются неизменными, поэтому они характеризуют линию.
Определение:
I2>0 – элиптический тип
I2<0 – гиперболический тип
I2=0 – параболический тип
ЦЕНТР ЛИНИИ 2-ГО ПОРЯДКА.
Пусть задана на плоскости линия уравнением (1).
Параллельный перенос:
Параллельно перенесем систему XOY на вектор OO’ т.о. что бы в системе X’O’Y’ коэфф. при x’ и y’ преобразованного уравнения кривой оказались равными нулю. После этого:
a11x’2+2a12x’y’+a22y’2+a’33=0 (2)
точка О’ находится из условия: a13’=0 и a23’=0.
Получается система a11x0+a12y0+a13=0 и a12x0+a22y0+a23=0
Покажем, что новое начало координат (если система разрешима) является центром симметрии кривой: f(x’;y’)=0, f(-x’;-y’)= f(x’;y’)
Но точка О’ существует если знаменатели у x0и y0отличны от нуля.
Точка O’ – единственная точка.
Центр симметрии кривой существует если I2¹0 т.е. центр симметрии имеют линии элиптического и гиперболического типа
Поворот:
Пусть система XOY повернута на угол u. В новой системе координат уравнение не содержит члена с x’y’ т.е. мы делаем коэфф. а12=0. a12’= -0,5(a11-a22)sin2u+a12cos2u=0 (разделим на sin2u), получим:
, после такого преобразования уравнение принимает видa11’x’2+a22’y’2+2a13’x’+2a23’y’+a33’=0 (3)
ТЕОРЕМА О ЛИНИЯХ ЭЛИПТИЧЕСКОГО ТИПА.
Теорема: Пусть задана линия элиптического типа т.е. I2>0 и пусть I1>0следовательно уравнение (1) определяет: 1. I3<0 – эллипс; 2. I3=0 – точка; 3. I3>0 – ур-е (1) не определяет. Если I3=0 говорят, что эллипс вырождается в точку. Если I3>0 говорят, что задается мнимый эллипс. Пусть после ПП и поворота ур-е (1) принимает вид (*).
Доказательство:
1. пусть I2>0, I1>0, I3<0, тогда
а11’’x’’2+a22’’ y’’2= -I3/I2
I2=a11’’a22’’ > 0
I1= a11’’+a22’’ > 0
a11’’ > 0; a22’’ > 0
Итак, под корнями стоят положительные числа, следовательно, уравнение эллипса.
2. I3>0 в данном случае под корнем стоят отрицательные числа, следовательно уравнение не определяет действительного геометрического образа.
3. I3=0 в данном случае т(0,0) – случай вырождения эллипса.
ТЕОРЕМА О ЛИНИЯХ ГИПЕРБОЛИЧЕСКОГО ТИПА.
Теорема: Пусть уравнение (1) определяет линию гиперболического типа. Т.е. I2<0, I3¹0 - ур-е (1) определяет гиперболу; I3=0 – пару пересекающихся прямых.
Доказательство:I2<0; I2= a11’’a22’’ < 0. Пусть a11’’>0; a22’’<0
Пусть I3>0
В данном случае мы имеем гиперболу с действительной осью ОХ.
Пусть I3<0
-(-а11’’)x’’2+a22’’ y’’2= -I3/I2
В этом случае мы имеем гиперболу с действительной осью ОY
Пусть I3=0
а11’’x’’2-(-a22’’)y’’2=0