Генетический алгоритм (ГА) разработан Джоном Голландом (John Holland) в 1975 году в Мичиганском университете. В дальнейшем Д. Голдберг (D. Goldberg) выдвинул ряд гипотез и теорий, помогающих глубже понять природу генетических алгоритмов. К.ДеДжонг (K. DeJong) первым обратил внимание на важность настройки параметров ГА для общей эффективности работы и предложил свой оптимальный вариант подбора параметров, который послужил основой для всех дальнейших исследований. Существенный вклад в эти исследования внесли Дж. Грефенстетт (J. Greffenstett) и Г. Сесверда (G. Syswerda).
Генетический алгоритм был получен в процессе обобщения и имитации в искусственных системах таких свойств живой природы, как естественный отбор, приспособляемость к изменяющимся условиям среды, наследование потомками жизненно важных свойств от родителей и т.д. Так как алгоритм в процессе поиска использует некоторую кодировку множества параметров вместо самих параметров, то он может эффективно применяться для решения задач дискретной оптимизации, определённых как на числовых множествах, так и на конечных множествах произвольной природы. Поскольку для работы алгоритма в качестве информации об оптимизируемой функции используются лишь её значения в рассматриваемых точках пространства поиска и не требуется вычислений ни производных, ни каких-либо иных характеристик, то данный алгоритм применим к широкому классу функций, в частности, не имеющих аналитического описания. Использование набора начальных точек позволяет применять для их формирования различные способы, зависящие от специфики решаемой задачи, в том числе возможно задание такого набора непосредственно человеком.
Сила генетических алгоритмов в том, что этот метод очень гибок, и, будучи построенным в предположении, что об окружающей среде нам известен лишь минимум информации (как это часто бывает для сложных технических систем), алгоритм успешно справляется с широким кругом проблем, особенно в тех задачах, где не существует общеизвестных алгоритмов решения или высока степень априорной неопределенности.
Генетический алгоритм: описание
Генетический алгоритм работает с представленными в конечном алфавите строками S конечной длины l, которые используются для кодировки исходного множества альтернатив W. Строки представляют собой упорядоченные наборы из l элементов: S=(s1, s2, ..., sl), каждый из которых может быть задан в своём собственном алфавите Vi,
Для работы алгоритма необходимо на множестве строк
Если на множестве W задана целевая функция f(w), то функцию F(S) на множестве строк
Генетический алгоритм за один шаг производит обработку некоторой популяции строк. Популяция G(t) на шаге t представляет собой конечный набор строк:
Анализ работы алгоритма удобно производить, используя аппарат схем. Схемой в генетическом алгоритме называют описание некоторого подмножества строк. Схема H=(h1, h2, ..., hm ) может рассматриваться как строка, алфавиты для элементов которой дополнены специальным символом “#”:
Например, для множества строк
Часть популяции
Суть генетического алгоритма заключается в следующем.
Пусть на шаге t имеется популяция G(t), состоящая из N строк. Для популяции вводится понятие средней ценности популяции Fср (G(t)):
Аналогично для подпопуляции GH(t), удовлетворяющей схеме H, вводится понятие средней ценности подпопуляции Fср (GH(t)):
Генетический алгоритм осуществляет переход от популяции G(t) к популяции G(t+1) таким образом, чтобы средняя ценность составляющих её строк увеличивалась, причём количество новых строк в популяции равно KЧ N, где K - коэффициент новизны. Если K<1, то популяция будет перекрывающейся, т.е. в новой популяции сохраняются некоторые строки из старой, а если K=1, то она будет неперекрывающейся, т.е. подвергнется полному обновлению.
Генетический алгоритм включает три операции: воспроизводство, скрещивание, мутация.
Генетический алгоритм: блок-схема
Генетический алгоритм: основные операции
Генетический алгоритм включает три операции: воспроизводство, скрещивание, мутация.
Воспроизводство представляет собой процесс выбора K*N N строк популяции G(t) для дальнейших генетических операций. Выбор производится случайным образом, причём вероятность выбора строки Sit пропорциональна её ценности:
Процесс выбора повторяется K*N N раз. Предполагаемое количество экземпляров строки Sit в популяции G(t+1) равно
Операция воспроизводства увеличивает общую ценность последующей популяции путём увеличения числа наиболее ценных строк.
Пусть в популяции G(t) содержится n(H, t) строк, удовлетворяющих схеме H. Тогда в результате воспроизводства количество строк, удовлетворяющих схеме H в популяции G(t+1) будет равно n(H, t+1):
Используя выражения для средней ценности популяции Fср(G(t)) и подпопуляции Fср(GH(t)), можно записать формулу (1) в виде:
Средняя ценность подпопуляции, соответствующей схеме H, может быть представлена в следующем виде:
Предположим, что величина c при изменении t не изменяется; тогда, начиная с t=0, получим:
Таким образом, в результате операции воспроизводства те схемы, для которых соответствующие подпопуляции имеют среднюю ценность выше средней в популяции, увеличивают количество своих представителей.
Воспроизводство оперирует со строками, уже присутствующими в рассматриваемой популяции, и само по себе не способно открывать новые области поиска. Для этой цели используется операция скрещивания.