Стр. 1-1
Задание № 5
В 92-процессорном ЭВС 19 микропроцессоров обрабатываюттекстовую информацию, 17 – графическую, 11 - символьную, 12 -микропроцессоров одновременно обрабатывают графическую и текстовую, 7 - текстовую и символьную, 5 - графическую и символьную, а часть микропроцессоров одновременно обрабатывают графическую, текстовую и символьную информацию.
Сколько микропроцессоров являются универсальными, если при решении задачи не задействованы 67 микропроцессоров.
Задание № 6.
Пусть Х=(АВ)С и Y = A(BC) Доказать, что Х Y и YX = АС
Задание № 7.
Определить число всевозможных слов длины 5, если А = {X,Y}- алфавит.
Задание № 7.1
Определить число всевозможных слов длины 4, если А = {X,Y,Z,T}- алфавит.
Задание № 8.
Указать области определения и значения для соответствия "Больше", если А = {2,4,6} ;R={1,4,6,7}
Задание № 9.
Из них 19 не сдали математику, 17 - физику, 11 - программирование, 12 студентов не сдали математику и физику, 7 - математику и программирование, 5 - физику и программирование; 237 сдалиматематику, физику, программирование. Сколько студентов безуспешно (т.е. не сдавшие 3-й экзамена)
закончили сессию ?
Задание № 10.
Доказать справедливость следующих выражений: АÇ(В\С); (А В)\С, (aÈb)\c=(a\С)È(b\c)
Стр. 1-(2-3)
Задание № 11.
Сколько соответствий можно установить между элементами множеств A={k,l,m,n} и В= {В1,В2.ВЗ} Какие из этих соответствий являются отображениями ? К каким типам относятся приведенные соответствия ?
Задание № 12.
Для общего собрания старшекурсников МИЭМ (1240 студентов) все 40 старост были оповещены по телефону, с тем, чтобы они оповестили студентов своих групп. Каждый из старост позвонил студентам и попросил их позвонить другим студентам. При условии "равенство" определить их. если ни одно лицо не оповещается дважды.
Задание № 13.
К каким видам относятся следующие множества : А - множество всех простых чисел натурального рядаN; В - множество деревьев на луне ; С - множество всех решений уравнения 2х-3=0?
Для написания цифр почтового индекса используют множество из девяти элементов, которые на рисунке обозначены буквами. Запишите множества Ак (к = 0,9) элементов каждой из десяти цифр. Имеются ли среди этих множеств непересекающиеся ?
Задание № 15.
В химическом продукте могут оказаться примеси четырех видов -a.b,c,d. Приняв в качестве исходного множества М={a,b,c.d}. Образуйте множество всех его подмножеств В (М). Дайте содержательную интерпретацию этого множества и его элементов. Каким ситуациям соответствуют, в частности, несобственные подмножества ?
Доказать, что для любых множеств А и В справедливо соотношение : О АВАВ
Определить число всех n - последовательностей из нулей и единиц (т.е. двоичных кодов длины n).
Сколько студентов из группы в 30 человек изучают по свободному учебному плану три дисциплины, если известно; 19 студентов изучают ТАР, 17 - конструкрованнеЭВС. 11 - технологию ЭВС. 12 - ТАР и КЭВС, 7 - ТАР иТЭВС, 5 -КЭВС и ТЭВС, в пять студентов обучается по типовому плану.
Доказать, что, выбрав одно слово из словаря, содержащего 90000 слов на 915 страницах, его можно определить путем 17 вопросов, на которые отвечают лишь "да" или "нет".
Задание № 20.
Указать область определения и значения для соответствия "равенство",
определить число всех слов длины 4, если алфавит: А = X, Y.
Стр. 2-1
Задача № 37.
Сколько конструктивов ЗВС эксплуатируемой в соответствующих условиях не резонирует от дестабилизирующих механических факторов частоты f1и f2, если известно: число конструктивов 67, из них 47 резонируют при f1; 35 резонируют при f2; 20 резонируют при f3, 23 резонируют при f1 b f2; 12 резонируют при f1 и f3; 5 резонируют при всех частотах объекта установки, то есть f1, f2 b f3.
Стр. 3-1
Задачи по дискретной математике. Раздел: Теория множеств.
4.
Доказать, что система счисления с основанием "3" являются наиболее экономичными.
5.
Сколько покрывающих деревьев можно образовать на множестве вершин, если символ каждого дерева имеет длину 21? Результат обосновать и доказать.
6.
Какиеиз нижеприведенных неверны и почему?
x{2,а, х}; 3 {1,{2,3},4}; x {l,cos x}; (x,y) {a,{x,y},b}.
7.
Образуйте множество праздничных дней первых трех месяцев 1996 года. Пересекается ли это множество с множеством воскресных дней тех же месяцев 1996 года? Запишите элементы пересечения этих множеств.
12.
Для 2 множеств X=x1,x2, x3, x4, x5, x6 и Y = yl,y2,y3, y4 определено бинарное отношение A=(x1,x2)(x2,y1)(x2,y1)(x4,y2), (x4,y3)(x5,y1)(x5,y3) Для данного отношения А:
· записать область определения и область знач.
· определить симметрию отношении А.
17.
Равны ли между собой множества А и В (еслинет, то почему?)
А = { 1 ,(2,5),6}, В={ 1,2,5,6};
a) A={2,4,5}, В={5,2,4}; А={1,2,4,2}, B={1,2,4};
b) A={2,4,5},B={2,4,3}; A={1,{2,5},6},B={1,{5,2},6}; A={1,{2,7},8}, B={1,(2,7),8}.
18.
B каких отношениях находятся между собой множества А, В, С?
а) А={1,3}; В={х: х - нечетное число}; С={х: х-4х+3=0};
б) А={2,5}; В={х; х - целое число }; С={х: х- 7х +10=0}.
19.
К каким видам относятся следующие множества:
а) А - множества ИС в АЛУ; В - множества квадратньгх целых чисел. С={х: 2х-З=О}; Д={х: у - дерево, растущее на Луне}
б) А - множество МП в УУ; В - .множество простых чисел; С={у: 3у-7=0}; Д={z: z - слон без хобота}?
20.
Сколько различных семибуквенных слов можно составить из букв русского языка, не обращая внимания на их семантику?
21.
Представьте бинарное отношение, задание графом
как множество упорядоченных пар и запишите его матрицу. Какими свойствами характеризуется данное отношение?