Смекни!
smekni.com

Математическая статистика (стр. 10 из 14)

Если мы провели n=500 проверок и обнаружили X=30 бракованных изделий, то выдвинув гипотезу Њ0: p=5% , мы найдем выборочное значение критерия по {5–7}. Оно составит около 1.03, что меньше “контрольного” 1.96 . Значит, у нас нет оснований браковать всю партию.

Но возникает вопрос – сколько проверок достаточно для принятия решения с уровнем значимости в 5%? Для этого достаточно учесть допустимый процент брака (т.е. задать p), указать допустимое расхождение между ним и наблюдаемым процентом брака в выборке (d= p–X/n) и воспользоваться выражением

{5–8}

Если мы примем d=±0.02, то получим ответ – вполне достаточно 456 проверок, чтобы убедиться в том, что реальный процент брака отличается от допустимого не более чем на 2%.

6.Выборочные распределения на шкале Nom

Напомним, что случайная величина X, принимающая одно из n допустимых значений A, B, C и т.д. имеет номинальную шкалу тогда, когда для любой пары этих значений применимы только понятия “равно” или “неравно”.

Для подобных СВ не существует понятий математического ожидания, как и других моментов распределения. Но понятие закона распределения имеет смысл ­– это ряд вероятностей PA = P(X=A) для каждого из допустимых значений. Соответственно, итоги наблюдения над такой СВ дадут нам частоты fA. Если у нас имеется всего N наблюдений за такой величиной, то иногда имеется возможность выдвинуть и проверить гипотезы о природе такой случайной величины, ее законе распределения и параметрах этого закона. Ситуации, когда это возможно сделать, не так уж и редки – всё зависит от понимания нами природы, сути случайных событий, от многозначности случайной величины и, конечно же, от количества наблюдений.

6.1Случай двухзначной случайной величины, N<50

Пусть нам крайне важно оценить "симметричность" некоторой случайной величины на номинальной двухпозиционной шкале со значениями "+" и "–" по наблюдениям за этой величиной. Если таких наблюдений было N+ =15и N = 25 соответственно, то это вся информация, которая у нас есть. Что же можно узнать из нее? Оказывается – достаточно много и иногда … даже надёжно!

В конце концов, мы можем полагать вероятность значения "+" на данной номинальной шкале равной p и тогда q = (1 – p) даст нам вероятность положения "–" на этой же шкале. Таким образом, мы уже построили закон распределения и дело остается за оценкой его единственного параметра p.

По сути дела у нас есть одна дискретная случайная величина – число появлений X на "первой" позиции своей номинальной шкалы и это число составляет S= N+ .

Но совершенно ясно, что новая случайная величина S имеет биномиальный закон распределения и вероятность наблюдения N+ =15вполне можно вычислить, если знать или задаться значением p.

Выдвинем вначале нулевую гипотезу о симметрии распределения X и альтернативную ненаправленную гипотезу –

Њ0: p=q= 0.5; Њ1: p#q# 0.5.

Как обычно, оценим вероятность имеющегося наблюдения при верной нулевой гипотезе. Используя формулы расчета вероятности P(S£15) или специальные таблицы биномиального распределения находим для 5%–го уровня значимости, что критическое значение S составляет 27, т.е. заметно больше наблюдаемого N+ =15. Следовательно, наши наблюдения статистически значимы – можно отвергнуть гипотезу Њ0, рискуя при этом ошибиться только в пяти случаях из 100.

Рассмотрим теперь несколько иной пример. Пусть нам необходимо проверить партию изделий в 50 штук при следующем правиле ­– вся партия бракуется, если доля бракованных изделий превышает 10%.

Выдвигаем гипотезы

Њ0: p £ 0.10 и q ³ 0.90; Њ1: q £ 0.90 и p ³ 0.10.

Можно сразу решить вопрос о количестве проверок N, достаточном для обоснованном решении об отбрасывании нулевой гипотезы. Поскольку мы имеем биномиальное распределение числа бракованных изделий в выборке из N наблюдений, то нам надо, прежде всего, установить порог значимости наблюдений ­– примем его традиционно, равным 0.05.

Теперь можно начинать наблюдения, накапливая результаты и по мере роста числа наблюдений контролировать их значимость. Покажем, как это делать в ситуации, когда N=48, а число бракованных изделий к этому времени составило 4.

По сути дела, нам надо вычислить вероятность появления 4 отрицательных исходов и всех еще менее вероятных в серии из 48 испытаний. Правда сделать это вручную слишком сложно – придется работать с биномом 48 степени. Поэтому при отсутствии компьютерной программы можно использовать специальные таблицы биномиального распределения.

В них можно найти значение числа событий с вероятностью 0.10 каждое, достаточное для отбрасывании нулевой гипотезы с вероятностью ошибки первого рода в 5%. В наших условиях это число равно 9, значит при наблюдаемом меньшем числе бракованных изделий (всего 4) гипотезу Њ0 следует принять и всю партию не браковать.

6.2Случай двухзначной случайной величины, N>50

При достаточно больших выборках можно поступать и иначе. В качестве правила проверки гипотез используют так называемый критерий "хи–квадрат”

c2 = å

. {6–1}

Эта непрерывная случайная величина была предложена видным статистиком Р.Фишером для проверки гипотез о соответствии выборочного распределения некоторому заданному закону. Для этого используются экспериментальные частости NE и вычисленные в соответствии Њ0 “теоретические” NH . Разумеется, суммирование ведется по всем допустимым значениям СВ. В нашем примере у нее всего лишь два значения (изделие годно или бракованное), поэтому в числителе надо иметь т.н. поправку на непрерывность. Она корректирует влияние природы распределений: дискретное у наблюдаемой величины и непрерывное у критерия Фишера.

Изменим условия предыдущего примера ­– пусть N= 100, число бракованных изделий составило NE–=12. Нетрудно определить NE+=88, но что касается "гипотетических" частостей NH– и NH+, то эти величины зависят от того, как мы сформулируем гипотезы. Если их оставить без изменения, то эти частости составят NH+ = 90 и NH– = 10. Вычисление выборочного значения c2–критерия не вызывает проблем, важнее знать – как использовать результат расчета. В нашем примере расчетное значение критерия составит 0.25. Кроме конкретного значения критерия надо учесть так называемое число степеней свободы. В нашем случае это 1, а в общем случае надо уменьшить число допустимых значений n на единицу. Ну, а далее требуется взять стандартные статистические таблицы, учесть пороговое значение ошибки первого рода ­– и получить ответ. Для примера приведем часть такой таблицы при a=0.05

Таблица 6–1

Степеней свободы 1 2 3 4 5 6 7 8 9
Критическое c2 3.84 5.99 7.82 9.49 11.1 12.6 14.1 15.5 16.9

Если наблюдаемое значение c2 меньше критического, гипотеза Њ0 может быть принята.

В условиях нашего примера расчетное значение критерия c2 составляет всего лишь 0.25, что меньше критического 3.48 (для одной степени свободы) и отвергать гипотезу Њ0 (браковать всю партию) нет оснований. Но, если бы мы наблюдали не 12, а 17 случаев брака, то расчетное значение критерия составило бы около 4.62 и гипотезу Њ0 пришлось бы отвергнуть.

6.3Случай многозначной случайной величины

Существует достаточно обширный класс задач со случайными величинами, распределенными на номинальной шкале с тремя и более допустимыми значениями.

В таких задачах обычно используется все тот же критерий c2 с числом степеней свободы более одной. По сути дела, используют почти ту же формулу –

c2 = å

, {6–2} в которой просто не используется поправка на непрерывность.

Так, например, наблюдая численности покупок четырех категорий некоторого товара, мы могли зафиксировать следующие данные:

Таблица 6–1

Товары A B C D Всего
Число покупок 30 55 27 48 160

Выдвинем гипотезы:

Њ0: Все товары одинаково популярны или РАBCD=0.25

Њ1: Популярности товаров значимо различны.

Несложный расчет дает расчетную величину критерия около 14, т.е. ощутимо больше критического значения 7.8 для 3–х степеней свободы по табл. 6–1. Это дает нам основание отвергнуть гипотезу о равной популярности этих видов товара.

7.Выборочные распределения на шкале Ord

Случайные величины с порядковой шкалой измерения – это дискретные, для всех допустимых значений которых, кроме отношений“=" или "#”, разрешены отношения “<" или ">”. Классическим примером порядковых величин являются оценки знаний, успеваемости, приоритета. Для таких СВ, как и для номинальных, не имеют смысла понятия моментов распределений.