Смекни!
smekni.com

Математическая статистика (стр. 4 из 14)

Вопрос заключается в другом – как проверить свое допущение или, на языке статистики, оценить достоверность гипотезы?

По сути дела, кроме обычного наблюдения за этой СВ у нас нет иного способа выполнить такую проверку. И потом – в силу самой природы СВ мы не можем надеяться, что через достаточно небольшое число наблюдений их частоты превратятся в “теоретические” значения, в вероятности. Короче – результат наблюдения над случайной величиной тоже … случайная величина или, точнее, – множество случайных величин.

Так или примерно так рассуждали первые статистики–профессионалы. И у кого–то из них возникла простая идея: сжать информацию о результатах наблюдений до одного, единственного показателя!

Как правило, простые идеи оказываются предельно эффективными, поэтому способ оценки итогов наблюдений по одному, желательно “главному”, “центральному” показателю пережил все века становления прикладной статистики и по ходу дела обрастал как теоретическими обоснованиями, так и практическими приемами использования.

Вернемся к гистограмме рис. 2–1 и обратим внимание на два, бросающихся в глаза факта:

· “наиболее вероятными” являются значения суммы S=1 и S=2 и эти же значения лежат “посредине” картинки;

· вероятность того, что сумма окажется равной 0 или 1, точно такая же, как и вероятность 2 или 3, причем это значение вероятности составляет точно 50 %.

Напрашивается простой вопрос – если СВ может принимать значения 0, 1, 2 или 3, то сколько в среднем составляет ее значение или, иначе – что мы ожидаем, наблюдая за этой величиной?

Ответ на такой вопрос на языке математической статистики состоит в следующем. Если нам известен закон распределения, то, просуммировав произведения значений суммы S на соответствующие каждому значению вероятности, мы найдем математическое ожидание этой суммы как дискретной случайной величины –

M(S) = S S i ·P(S i). {2–3}

В рассматриваемом нами ранее примере биномиального распределения, при значении p=0.5, математическое ожидание составит

M(S) = 0·0.125+1·0.375+2·0.375+3·0.125= 1.5 .

Обратим внимание на то, что математическое ожидание дискретной величины типа Int или Rel совсем не обязательно принадлежит к множеству допустимых ее значений. Что касается СВ типа Nom или Ord, то для них понятие математического ожидания (по закону распределения), конечно же, не имеет смысла. Но так как с номинальной, так и с порядковой шкалой дискретных СВ приходится иметь дело довольно часто, то в этих случаях прикладная статистика предлагает особые, непараметрические методы.

Продолжим исследование свойств математического ожидания и попробуем в условиях нашего примера вместо S рассматривать U= S – M(S). Такая замена СВ (ее часто называют центрированием) вполне корректна: по величине U всегда можно однозначно определить S и наоборот.

Если теперь попробовать найти математическое ожидание новой (не обязательно дискретной) величины M(U) , то оно окажется равным нулю, независимо от того считаем ли мы конкретный пример или рассматриваем такую замену в общем виде.

Мы обнаружили самое важное свойство математического ожидания – оно является “центром” распределения. Правда, речь идет вовсе не о делении оси допустимых значений самой СВ на две равные части. Поистине – первый показатель закона распределения “самый главный” или, на языке статистики, – центральный.

Итак, для СВ с числовым описанием математическое ожидание имеет достаточно простой смысл и легко вычисляется по законам распределения. Заметим также, что математическое ожидание – просто числовая величина (в общем случае не дискретная, а непрерывная) и никак нельзя считать ее случайной.

Другое дело, что эта величина зависит от внутренних параметров распределения (например, – значения вероятности р числа испытаний n биномиальном законе).

Так для приведенных выше примеров дискретных распределений математическое ожидание составляет:

Тип распределения Математическое ожидание
Биномиальное n·p
Распределение Паскаля k ·q / p
Геометрическое распределение q / p
Распределение Пуассона l

Возникает вопрос – так что же еще надо? Ответ на этот вопрос можно получить как из теории, так и из практики.

Один из разделов кибернетики – теория информации (курс “Основы теории информационных систем” у нас впереди) в качестве основного положения утверждает, что всякая свертка информации приводит к ее потере. Уже это обстоятельство не позволяет допустить использование только одного показателя распределения СВ – ее математического ожидания.

Практика подтверждает это. Пусть мы построили (или использовали готовые) законы распределения двух случайных величин X и Y и получили следующие результаты:

Таблица 2–2

Значения 1 2 3 4
P(X) % 12 38 38 12
P(Y) % 30 20 20 30

Рис. 2–2

Простое рассмотрение табл.2–2 или соответствующих гистограмм рис.2–2 приводит к выводу о равенстве M(X) = M(Y) = 0.5 , но вместе с тем столь же очевидно, что величина X является заметно “менее случайной”, чем Y.

Приходится признать, что математическое ожидание является удобным, легко вычислимым, но весьма неполным способом описания закона распределения. И поэтому требуется еще как–то использовать полную информацию о случайной величине, свернуть эту информацию каким–то иным способом.

Обратим внимание, что большие отклонения от M(X) у величины X маловероятны, а у величины Y – наоборот. Но при вычислении математического ожидания мы, по сути дела “усредняем” именно отклонения от среднего, с учетом их знаков. Стоит только “погасить” компенсацию отклонений разных знаков и сразу же первая СВ действительно будет иметь показатель разброса данных меньше, чем у второй. Именно такую компенсацию мы получим, усредняя не сами отклонения от среднего, а квадраты этих отклонений.

Соответствующую величину

D(X) = S (X i – M(X))2 · P(X i); {2–4} принято называть дисперсией распределения дискретной СВ.

Ясно, что для величин, имеющих единицу измерения, размерность математического ожидания и дисперсии оказываются разными. Поэтому намного удобнее оценивать отклонения СВ от центра распределения не дисперсией, а квадратным корнем из нее – так называемым среднеквадратичным отклонением s, т.е. полагать

s2 = D(X). {2–5}

Теперь оба параметра распределения (его центр и мера разброса) имеют одну размерность, что весьма удобно для анализа.

Отметим также, что формулу {2–3} часто заменяют более удобной

D(X) = S (X i)2·P(X i) – M(X)2. {2–6}

Весьма полезно будет рассмотреть вопрос о предельных значениях дисперсии.

Подобный вопрос был бы неуместен по отношению к математическому ожиданию ­– мало ли какие значения может иметь дискретная СВ, да еще и со шкалой Int или Rel.

Но дословный перевод с латыни слова “дисперсия” означает “рассеяние”, “разброс” и поэтому можно попытаться выяснить – чему равна дисперсия наиболее или наименее “разбросанной” СВ? Скорее всего, наибольший разброс значений (относительно среднего) будет иметь дискретная случайная величина X, у которой все n допустимых значений имеют одну и ту же вероятность 1/n. Примем для удобства Xmin и Xmax (пределы изменения данной величины), равными 1 и n соответственно.

Математическое ожидание такой, равномерно распределенной случайной величины составит M(X) = (n+1)/2 и остается вычислить дисперсию, которая оказывается равной D(X) = S (Xi)2/n – (n+1)2/4= (n2–1)/ 12.

Можно доказать, что это наибольшее значение дисперсии для дискретной СВ со шкалой Int или Rel .

Последнее выражение позволяет легко убедиться, что при n =1 дисперсия оказывается равной нулю ­ – ничего удивительного: в этом случае мы имеем дело с детерминированной, неслучайной величиной.

Дисперсия, как и среднеквадратичное отклонение для конкретного закона распределения являются просто числами, в полном смысле показателями этого закона.

Полезно познакомиться с соотношениями математических ожиданий и дисперсий для упомянутых ранее стандартных распределений:

Таблица 2–3

Тип

распределения

Математическое ожидание Дисперсия

Коэффициент

вариации

Биномиальное n
p
n
p
q
Sqrt(q/n·p)
Паскаля k
q/p
k
q/p2
Sqrt(1/ kq)
Геометрическое q/p q/p2 Sqrt(1/q)
Пуассона l l Sqrt(1/l)

Можно ли предложить ещё один или несколько показателей – сжатых описаний распределения дискретной СВ? Разумеется, можно.

Первый показатель (математическое ожидание) и второй (дисперсия) чаще всего называют моментами распределения. Это связано со способами вычисления этих параметров по известному закону распределения – через усреднение значений самой СВ или усреднение квадратов ее значений.