Смекни!
smekni.com

Астероиды: Большая четверка (стр. 1 из 2)

В Палермо, на о. Сицилия итальянский астроном директор обсерватории Джузеппе Пиацци уже много лет вел наблюдения положений звезд для составления звездного каталога. Работа близилась к концу. В первый вечер XIX в., 1 января 1801 г., Пиацци обнаружил в созвездии Близнецов слабую звездочку, с блеском около 7m, которой почему-то не оказалось ни в его собственном каталоге, ни в каталоге Христиана Майера, имевшегося в распоряжении Пиацци. На следующий вечер оказалось, что звездочка имеет не те координаты, что накануне: она сместилась на 4' по прямому восхождению и на 3',5 по склонению. На третью ночь выяснилось, что ошибки нет и что звездочка медленно перемещается по небу. Шесть недель следил Пиацци за странной звездой. Ни диска, которым должна была обладать планета, ни туманного вида, характерного для комет!

Почти две недели движение объекта было попятным (он смещался среди звезд к западу), 12 января словно застыл на месте, а затем сменил движение на прямое (к востоку). Такое поведение характерно для планет. За шесть недель объект сместился в общей сложности на 4o, но вид его остался неизменным. Объект казался Пиацци все более интересным. Но наблюдения прервала болезнь. Поправившись, Пиацци уже не смог найти его. Непрерывно перемещаясь, объект затерялся среди слабых звезд..

В это время 23-летний, еще никому не известный, Карл Фридрих Гаусс увлекся созданием методов обработки астрономических наблюдений. Он решил попытаться определить эллиптическую орбиту новой планеты по имеющимся данным. Для этого ему пришлось разработать новый метод, который прославил Гаусса и известен теперь в небесной механике как метод определения эллиптической орбиты по трем наблюдениям. Объединив результаты всех наблюдений с помощью созданного им же несколько раньше метода наименьших квадратов, Гаусс определил, что орбита объекта лежит между орбитами Марса и Юпитера и что большая полуось ее (2,8 а. е.) точно совпадает со значением, предсказанным законом Тициуса-Боде. Сомнений не осталось : это была искомая планета. Теперь по известной орбите Гаусс вычислил дальнейший путь объекта на небу (эмефриду)

Новой планете нужно было дать название. Пиацци предложил название Церера Фердинанда, посвящая планету своему королю. Но не обошлось без споров. Наполеон считал, что планету нужно назвать Юноной. Лаланд, бывший, к стати, учителем Пиацци, предложил назвать ее именем своего достойного ученика. Сохранилось название Церера

Новая планета заняла, как будто, равноправное положение среди остальных, к радости астрономов, заполнив брешь между Марсом и Юпитером. И все же было ясно, что Церера обманула надежды астрономов. Тех, кто надеялся найти между Юпитером и Марсом большую планету, постигло разочарование. Церера, как и остальные планеты, была холодной и светила отраженным солнечным светом. Но как же слаб, был этот свет! Венера и Юпитер светили в сотни раз ярче. Она была слабее более далекого Урана, а ее диск не удавалось рассмотреть в лучшие телескопы того времени рефлекторы Вильяма Гершеля. Это означало одно : Церера очень невелика по размерам. Между Марсом и Юпитером двигалась планета-крошка

В Берлине Генрих Вильгельм Ольберс, немецкий врач и астроном, член Парижской Академии наук, член Лондонского королевского общества и руководитель Берлинской обсерваторией, внимательно следил за движением Цереры. 28 марта 1802 г. он неожиданно неподалеку от нее обнаружил еще одну, но более слабую планетку (около 9m). Ольберс дал ей название Паллада, в честь Афины Паллады. Мало того, что Паллада двигалась тоже на расстоянии 2,8 а.е. от Солнца, уже занятом Церерой, ее орбита к тому же сильно отклонялась от плоскости эклиптики (на 35o). Почему же было две планеты-крошки, вместо одной большой, на расстоянии, предсказанном законом Тициуса-Боде?

"Где тот прекрасный закономерный порядок, которому подчинялись планеты в своих расстояниях ? - сокрушался Ольберт в письме к Боде. Мне кажется, еще рано философствовать по этому поводу; мы должны сначала наблюдать и определять орбиты, чтобы иметь верные основания для наших предположений. Тогда, быть может, мы решим или по крайней мере приблизительно выясним, всегда ли Церера и Паллада пробегали свои орбиты в мирном соседстве, относительно одна от другой, или обе они являются только обломками, только кусками прежней большой планеты, которую взорвала какая-нибудь катастрофа."

Место поисков новых астероидов было локализовано. Третья планета между Марсом и Юпитером (около 8m) была открыта в созвездии Кита. Ее обнаружил К. Гардинг в Лилиентале 1 сентября 1804 г. Ее посвятили, наконец, Юноне, снова римской богине. Далее 29 марта 1807 г. Ольберс открыл четвертую планету (около 6m), названную Вестой в честь римской богини домашнего очага и огня. Веста - единственный астероид, который иногда можно видеть невооруженным глазом.

Несмотря на малые размеры, Церера, Паллада, Юнона и Веста стали включаться в общий список планет, хотя потребность как-то выделить их ощущалась с самого начала. Пиацци предложил именовать новые члены Солнечной системы планетоидами (т.е. планетоподобными), а Гершель астероидами (звездоподобными) за отсутствие у них видимого диска. Их называли и телескопическими планетами, так как они не были видны невооруженным глазом. В настоящее время используют термин "астероид", но наряду с ним существует и другой - "малая планета".

Вереница открытий. Кольцо астероидов

После открытия большой четверки астероидов в течение последующих 40 лет поиски новых астероидов оставались безуспешными. Ольберс так и не узнал, что между Марсом и Юпитером движется огромное множество астероидов, заполняющих толстый тор, именуемый кольцом астероидов. Он умер за пять лет до того, как началась вереница их открытий. Не дожили до этого ни Пиацци, ни Гардинг

В конце 1845 года Карл Людвиг Генке открыл пятый астероид (9m,5), получивший название Астрея. Еще через полтора года - 1 июня 1847 г. - неутомимый Генке открывает шестой астероид, названный Гебой. В том же году американец Дж. Э. Хемд открывает Ирис и Флору, а чуть позже их же обнаруживает англичанин Д. Хтнд. Затем открытия следуют непрерывной чередой

Четырнадцать астероидов за 9 лет (с 1852 по 1861 г.) открыл немецкий художник Герман Майер Соломон Гольдшмидт

В 1860 г. было известно уже 62 астероида, к 1870 - 109, к 1880 - 211. А затем новых астероидов стало появляться все меньше. Иссякли "запасы" крупных и довольно ярких объектов. Теперь открывали астероиды 13-14m, и лишь изредка попадался пропущенный ранее объект. Таким, к примеру, оказалась Папагена (около 8m), открытая лишь в 1901 г

В сентябре-окрябре 1960 г. на обсерватории Маунт Паломар в США было проведено систематическое фотографирование небольшой области неба, размером 8 Х 12o, расположенной вблизи точки весеннего равноденствия. За два месяца было сфотографировано около 2200 астероидов вплоть до 20m, причем для 1811 из них удалось определить орбиты, хотя и не очень точные. Полагают, что общее число астероидов, движущихся в кольце, от крупнейших (1 Церера, диаметром около 1000 км) вплоть до тел поперечником 1 км достигает 1 млн

Число астероидов быстро растет по мере уменьшения их размеров. В интервале от 1 до 100 км суммарное число тел, диаметр которых превышает D, оказывается обратно пропорционально квадрату диаметра: N~D-2. Именно такое распределения по размерам ожидается у осколков раздробленных тел, и, по-видимому, дробление астероидов во взаимных столкновениях уже давно и полностью завуалировало то распределение, которое было у молодых, едва успевших сформироваться в протопланетном облаке первичных, небольших по размерам тел, называемых планетезималями

Семейства астероидов

В 1876 г., когда было известно всего около 150 астероидов, Д. Кирквуд пытался разобраться в "хаосе" астероидных орбит и нашел около 10 групп астероидов, каждая из которых состояла всего из 2-3 членов, двигавшихся по сходным орбитам. Среди них оказались, например, 3 Юнона и 97 Клота

Казалось, что такие группы можно рассматривать, как связанные общностью происхождения и что члены групп - обломки более крупных тел. Попытки Кирквуда продолжил Ф. Тиссеран, составивший в 1891 г. свой список из 417 астероидов. Число групп росло по мере роста числа открытых астероидов

По существу, это был вариант гипотезы Ольберса, только родство распространялось не на все астероиды, а на некоторые группы. Но дело оказалось совсем не таким простым, а родство в группах сомнительным. Это стало ясно, когда японский астроном К. Хираяма в 1918-1919 гг. обратил внимание на то, что сходство орбит астероидов вовсе не означает, что эти астероиды в прошлом были частями одного, более крупного тела. При большом числе астероидов не исключено объединение астероидов в группы из-за случайного сходства их орбит. Но главная ошибка заключалась в том, что в поисках "родственников" сравнивались современные орбиты астероидов. Между тем возмущения со стороны планет, накапливаясь с течением времени, могли постепенно до неузнаваемости и по-разному изменить орбиты тех астероидов, которые действительно являлись обломками одного и того же тела и действительно двигались в прошлом по сходным орбитам. С другой стороны, сходство современных орбит еще не означает, что и в далеком прошлом астероиды двигались по сходным орбитам. Поэтому, используя методику Кирквуда, если и можно обнаружить реальные группы "родственников", то лишь образовавшиеся совсем недавно, скажем, 1000 лет назад

Хираяма поставил вопрос: можно ли выявить группы астероидов, связанных давним родством, т.е. семейства астероидов (как он их назвал), и как это сделать?

Теория движения спутников планет с учетом возмущений, разработанная еще раньше Лангражем, указывала, что эксцентриситеты и наклоны орбит спутников остаются почти неизменными на больших промежутках времени, в то время как долготы перицентра и узла орбиты непрерывно меняются. Это привело Хираяму к идее "инвариантных" (неизменных) элементов астероидных орбит, которые тоже не менялись бы (или менялись медленно) под действием планетных возмущений. Такие элементы можно было использовать для поисков семейства астероидов. Хираяма нашел такие инвариантные элементы и назвал их собственными элементами орбиты, т.е. унаследованными астероидами от их "родителей". Конечно, при дроблении астероидов их обломки, получив разные, о малые добавки к орбитальной скорости, движутся по разным орбитам со слегка различными собственными элементами. Однако эти различия не настолько велики, чтобы помешать узнать члены семейства