Смекни!
smekni.com

Методы и алгоритмы построения элементов систем статистического моделирования (стр. 3 из 5)

1. Невозвратное множество (рис. 3).

Рис. 3. Невозвратное множество


В случае невозвратного множества возможны любые переходы внутри этого множества. Система может покинуть это множество, но не может вернуться в него.

2. Возвратное множество (рис. 4).


Рис. 4. Возвратное множество

В этом случае также возможны любые переходы внутри множества. Система может войти в это множество, но не может покинуть его.

3. Эргодическое множество (рис. 5).


Рис. 5. Эргодическое множество

В случае эргодического множества возможны любые переходы внутри множества, но исключены переходы из множества и в него.

4. Поглощающее множество (рис. 6)


Рис. 6. Поглощающее множество

При попадании системы в это множество процесс заканчивается.

Кроме описанной выше классификации множеств различают состояния системы:


а) существенное состояние (рис.7): возможны переходы из
в
и обратно.

Рис. 7. Существенное состояние

б) несущественное состояние (рис. 8): возможен переход из

в
, но невозможен обратный.

Рис. 8. Несущественное состояние

В некоторых случаях, несмотря на случайность процесса, имеется возможность до определенной степени управлять законами распределения или параметрами переходных вероятностей. Такие марковские цепи называются управляемыми. Очевидно, что с помощью управляемых цепей Маркова (УЦМ) особенно эффективным становится процесс принятия решений, о чем будет сказано впоследствии.

Основным признаком дискретной марковской цепи (ДМЦ) является детерминированность временных интервалов между отдельными шагами (этапами) процесса. Однако часто в реальных процессах это свойство не соблюдается и интервалы оказываются случайными с каким-либо законом распределения, хотя марковость процесса сохраняется. Такие случайные последовательности называются полумарковскими.

Кроме того, с учетом наличия и отсутствия тех или иных, упомянутых выше, множеств состояний марковские цепи могут быть поглощающими, если имеется хотя бы одно поглощающее состояние, или эргодическими, если переходные вероятности образуют эргодическое множество.

В свою очередь, эргодические цепи могут быть регулярными или циклическими. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (циклов) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают. Если просуммировать все вышесказанные определения, то можно дать следующую классификацию марковских процессов (рис. 9):


Рис. 9. Классификация марковских процессов

4. Математический аппарат дискретных марковских цепей

В дальнейшем рассматриваются простые однородные марковские цепи с дискретным временем. Основным математическим соотношением для ДМЦ является уравнение, с помощью которого определяется состояние системы на любом ее k-м шаге. Это уравнение имеет вид:

(4)

и называется уравнением Колмогорова-Чепмена.

Уравнение Колмогорова-Чепмена относится к классу рекуррентных соотношений, позволяющих вычислить вероятность состояний марковского случайного процесса на любом шаге (этапе) при наличии информации о предшествующих состояниях.

Дальнейшие математические соотношения зависят от конкретного вида марковской цепи.

4.1. Поглощающие марковские цепи

Как указывалось выше, у поглощающих ДМЦ имеется множество, состоящее из одного или нескольких поглощающих состояний.

Для примера рассмотрим переходную матрицу, описывающую переходы в системе, имеющей 4 возможных состояния, два из которых являются поглощающими. Матрица перехода такой цепи будет иметь вид:

(5)

Практически важным является вопрос о том, сколько шагов сможет пройти система до остановки процесса, то есть поглощения в том или ином состоянии. Для получения дальнейших соотношений путем переименования состояний матрицу (8.5) переводят к блочной форме:

(6)

Такая форма позволяет представить матрицу (6) в каноническом виде:

(6а)

где

- единичная матрица;

- нулевая матрица;

- матрица, описывающая переходы в системе из невозвратного множества состояний в поглощающее множество;

- матрица, описывающая внутренние переходы в системе в невозвратном множестве состояний.

На основании канонической формы (6а) получена матрица, называемая фундаментальной:

(7)

В матрице (7) символ (-1) означает операцию обращения, то есть

(8)

После соответствующих преобразований матрица (7) примет вид:

(7а)

Каждый элемент матрицы (7а) соответствует среднему числу раз попадания системы в то или иное состояние до остановки процесса (поглощения).

Если необходимо получить общее среднее количество раз попадания системы в то или иное состояние до поглощения, то фундаментальную матрицу М необходимо умножить справа на вектор-столбец, элементами которого будут единицы, то есть

(8а)

где

.

Для иллюстрации приведем конкретный числовой пример: пусть известны значения переходных вероятностей матрицы

с одним поглощающим состоянием:
;
;
;
;
;
;
;
.

Переходная матрица в блочной системе будет выглядеть так:

В данном случае

;
;
;

Проделаем необходимые вычисления:

;

;

.

В данном случае компоненты вектора

означают, что если процесс начинается с состояния
, то общее среднее число шагов процесса до поглощения будет равно 3,34 и, соответственно, если процесс начинается с состояния
, то - 2,26.

В конкретных задачах, конечно, более информативным результатом будет не количество шагов, а какие-либо временные или экономические показатели. Этот результат легко получить, если связать пребывание в каждом состоянии с соответствующими характеристиками. Очевидно, набор этих характеристик составит вектор, на который нужно умножить

слева.