E = a1 X1 + a2 X2 + ..... an Xn {3 - 5}
где Xi — искомые переменные, ai — соответствующие им коэффициенты или “веса переменных” и при этом имеют место ограничения как на переменные, так и на их веса.
Задачи такого класса достаточно хорошо исследованы в специальном разделе прикладной математики — линейном программировании. Еще в докомпьютерные времена были разработаны алгоритмы поиска экстремумов таких функций E = f(a,X), которые так и назвали — целевыми. Эти алгоритмы или приемы используются и сейчас — служат основой для разработки прикладных компьютерных программ системного анализа.
Системный подход к решению практических задач управления экономикой, особенно для задач со многими десятками сотен или даже тысячами переменных привел к появлению специализированных, типовых направлений как в области теории анализа, так и в практике.
Наиболее “старыми” и, следовательно, наиболее обкатанными являются методы решения специфичных задач, которые давно уже можно называть классическими.
Специалистам в области делового администрирования надо знать эти задачи хотя бы на уровне постановки и, главное, в плане моделирования соответствующих систем.
· Задачи управления запасами
Первые задачи управления запасами были рассмотрены еще в 1915 году — задолго не только до появления компьютеров, но и до употребления термина “кибернетика”. Был обоснован метод решения простейшей задачи — минимизация затрат на заказ и хранение запасов при заданном спросе на данную продукцию и фиксированном уровне цен. Решение — размер оптимальной партии обеспечивало наименьшие суммарные затраты за заданный период времени.
Несколько позже были построены алгоритмы решения задачи управления запасами при более сложных условиях — изменении уровня цен (наличие “скидок за качество” и / или “скидок за количество”); необходимости учета линейных ограничений на складские мощности и т. п.
· Задачи распределения ресурсов
В этих задачах объектом анализа являются системы, в которых приходится выполнять несколько операций с продукцией (при наличии нескольких способов выполнения этих операций) и, кроме того, не хватает ресурсов или оборудования для выполнения всех этих операций.
Цель системного анализа — найти способ наиболее эффективного выполнения операций с учетом ограничений на ресурсы.
Объединяет все такие задачи метод их решения — метод математического программирования, в частности, — линейного программирования. В самом общем виде задача линейного программирования формулируется так:
требуется обеспечить минимум выражения (целевой функции)
E(X) = C1 X1 + C2 X2 + ......+ Ci Xi + ... Cn Xn {3 - 6} при следующих условиях:
все Xi положительны и, кроме того, на все Xi налагаются m ограничений (m < n)
.....................................................................................
Ai1·X1 + Ai2·X2 + ......+ Aij·Xj + ... Ain·Xn = Bi; {3 - 7}.....................................................................................
Am1·X1 + Am2·X2 + .....+ Amj·Xj+ ... Amn·Xn = Bm .Начала теоретического обоснования и разработки практических методов решения задач линейного программирования были положены Д.Данцигом (по другой версии — Л.В.Канторовичем).
Для большинства конкретных приложений универсальным считается т. н. симплекс-метод поиска цели, для него и смежных методов разработаны специальные пакеты прикладных программ (ППП) для компьютеров.
Весьма часто этап содержательной постановки задачи системного анализа приводит нас к выводу о наличии нескольких целей функционирования системы. В самом деле, если некоторая экономическая система может иметь “главную цель” — достижение максимальной прибыли, то почти всегда можно наблюдать ситуацию наличия ограничений или условий. Нарушение этих условий либо невозможно (тогда не будет самой системы), либо заведомо приводит к недопустимым последствиям для внешней cреды. Короче говоря, ситуация, когда цель всего одна и достичь ее требуется любой ценой, практически невероятна.
Пусть имеется самая простая ситуация многокритериальности — существуют только две цели системы T1 и T2 и только две возможных стратегии S1, S2.
Пусть мы как-то оценили эффективность E11 стратегии S1 по отношению к T1 и эффективность эта оказалась равной 0.4 (по некоторой шкале 0..1). Проделав такую же оценку для всех стратегий и всех целей, мы получили табличку (матрицу эффективностей):
Таблица 3.1
E | T1 | T2 |
S1 | 0.4 | 0.6 |
S2 | 0.7 | 0.3 |
Какую же из стратегий считать наилучшей? Пока мы не оговорим значимость каждой из целей, не укажем их веса, — спорить бесполезно! Вот если бы нам было известно, что первая цель, к примеру, в 3 раза важнее второй, то тогда
можно учесть их относительные веса — скажем величинами 0.75 для первой и 0.25 для второй. При таких условиях суммарные эффективности стратегий (по отношению ко всем целям) составят:
для первой E1 = 0.4 · 0.70 + 0.6 · 0.30 = 0.28 + 0.18 = 0.46;
для второй E2 = 0.8 · 0.70 + 0.2 · 0.25 = 0.56 + 0.05 = 0.61;
так что ответ на вопрос о выборе стратегии далеко не очевиден.
Итак, критерий эффективности системы при наличии нескольких целей приходится выражать через эффективности отдельных стратегий виде: Es = S St · Ut {3 - 8}
т. е. учитывать веса отдельных целей Ut.
Если вы внимательно следили за рассуждениями при рассмотрении примера {3-2}, то сейчас можете сообразить, что по сути дела там речь шла о двух целях. С одной стороны, мы хотели бы иметь как можно меньшие партии — их дешевле хранить (мал срок хранения). с другой стороны, нам были желательны большие партии, поскольку при этом меньше затраты на запуск партий в производство. Если бы мы перебирали все 365 возможных стратегий (от смены партии каждый день до одной в год), то, конечно же, нашли бы оптимальную стратегию со сменой партий каждые два месяца. Другое дело, что в нашем распоряжении была аналитическая модель системы (формула суммарных затрат).
Так вот — весовые коэффициенты целей в той модели были равными и мы их могли не замечать при поиске минимума затрат. Ну, а что делать, если “важность” целей приходится измерять не по шкале Int или Rel, т. е. в числовом виде, а по шкале Ord? Иными словами — откуда берутся весовые коэффициенты целей?
Очень редко весовые коэффициенты определяются однозначно по “физическому смыслу” задачи системного анализа. Чаще же всего их отыскание можно называть “назначением”, “придумыванием”, “предсказанием” — т. е. никак не "научными" действиями.
Иногда, как ни странно это звучит, весовые коэффициенты назначаются путем голосования — явного или тайного. Дело в том, что в ситуациях, когда нет числового метода оценки веса цели, реальным выходом из положения является использование накопленного опыта.
Нередко задает весовые коэффициенты непосредственно ЛПР, но чаще его опыт управления подсказывает: одна голова — хорошо, а много умных голов — куда лучше. Принимается особое решение — использовать метод экспертных оценок..