Смекни!
smekni.com

Основы теории систем и системный анализ (стр. 15 из 21)

Задача наша заключается в том, что мы должны знать — когда надо прекратить подымать цену за первый объект. Эту задачу не решить, если мы не определим цель своего участия в аукционе (системный подход, напомним, требует этого).

Здесь возможны варианты:

· мы хотим иметь максимальный доход;

· мы стремимся минимизировать доход конкурента;

· мы желаем максимизировать разницу в доходах — свой побольше, а конкурента поменьше.

Наиболее интересен третий вариант ситуации — найти нашу стратегию, обеспечивающую

DA — DB = Max. {3-19}

Поскольку объектов всего два, то все решается в процессе торгов за первый объект. Будем рассматривать свой ход в ответ на очередное предложение цены X за этот объект со стороны конкурента.

Мы можем использовать две стратегии поступить двумя способами:

· стремиться уступить первый объект конкуренту — за наибольшую цену, надеясь купить второй;

· стремиться купить первый объект — за минимальную цену, уступив конкуренту второй.

Пусть конкурент назначил за первый объект очередную сумму X. Если мы не добавим небольшую сумму (минимальную надбавку D), то первый объект достанется конкуренту. При этом у конкурента в запасе останется сумма SB - X. Доход конкурента составит при этом (без учета D) DB = С1 - X.

Мы наверняка купим второй объект, если у нас в кармане

SA = (SB - X) + D, то есть немного больше, чем осталось у конкурента.

Значит, мы будем иметь доход DA = C2 - (SB - X) и разность доходов в этом случае составит

DA - DB = C2 - C1 - SB + 2·X . {3-20}

Ясно, что эта разность будет положительна только тогда, когда мы уступим первый объект за цену

X >

, {3-21}

но никак не меньше.

· Будем повышать цену за первый объект до суммы X+ D с целью купить его.

Наш доход составит при этом

DA = C1 - (X + D).

Второй объект достанется конкуренту за сумму

SA - (X + D) + D,

так как ему придется поднять цену за этот объект до уровня, чуть большего остатка денег у нас.

Доход конкурента составит

DB = C2 - (SA - (X + D) + D),

а разность доходов составит (без учета D)

DA - DB = (C1 - X) - (C2 - SA + X) = С1 - С2 + SA - 2X . {3-22}

Эта разность будет положительна при условии

X <

, {3-23}

Мы нашли две "контрольные" суммы для того, чтобы знать — когда надо пользоваться одной из двух доступных нам стратегий — выражения {3-21} и {3-23}. Среднее этих величин составит

K =

+
{3-24}

и определяет разумную границу для смены стратегий нашего участия в аукционе с целью одновременно получить доход себе побольше, а конкуренту — поменьше.

Интересно сосчитать свой доход и разность доходов на этой границе.

· Если мы уступили первый объект на этой границе, то по {3-20}

DA - DB = C2 - C1 - SB + 2K = 0.5(SA - SB).

· Если же мы купили первый объект на этой границе, то по {3-22}

DA - DB = С1 - С2 + SA - 2K = 0.5(SA - SB).

Для удобства сопровождения числовыми данными зададимся свободными суммами и ценами объектов (по нашему представлению об этих объектах): SA= 100 < 175; SB = 110 < 175; C1 = 75; C2 = 100;

0.5 < (SA/ SB < 2 и примем разрешенную надбавку к цене равной 1.

В этом конкретном случае граница "сражения" за первый объект проходит через сумму

K =

+
= -12.5 + 52.5 = 40 $

Если наш конкурент считает, что объекты для него стоят столько же (он знает нашу свободную сумму, а мы знаем его свободную сумму, но другой информации мы и он не обладаем), то он вычислит эту же границу и мы будем довольствоваться разностью доходов не в свою пользу: DA - DB = С1 - С2 + SA - 2K = 0.5(SA - SB) = -5.

Что делать — у конкурента больший стартовый капитал.

Но, возможно, наш конкурент (играя за себя) будет считать стоимости объектов совсем иными и для него граница будет совсем другой. Или же — цель конкурента в данном аукционе совершенно не такая как наша, что также обусловит другую граничную сумму участия в торгах за первый объект. Иными словами — оптимальная стратегия для конкурента нам совершенно неизвестна.

Тогда все зависит от того, на какой сумме он "отдаст" нам первый объект или, наоборот, до какой границы он будет "сражаться" за него . Следующая таблица иллюстрирует этот вывод.

Таблица 3.9

Граница 1 торга за объект

Владелец

1 объекта

Доход DA

Доход DB

Разность

DA - DB

20

A

55

20

35

30

A

45

30

10

35

A

40

35

5

40

A

35

40

-5

40

B

25

35

-5

45

B

35

30

5

50

B

40

25

15

55

B

45

20

25

60

B

50

15

40

75

B

75

0

75

Заканчивая вопрос об открытых торгах — аукционах, отметим, что в реальных условиях задача моделирования и выбора оптимальной стратегии поведения оказывается весьма сложной.

Дело не только в том, число объектов может быть намного больше двух, а что касается числа участников, то оно также может быть большим и даже не всегда известным заранее. Это приведет к чисто количественным трудностям при моделировании "вручную", но не играет особой роли при использовании компьютерных программ моделирования.

Дело в другом — большей частью ситуация усложняется неопределенностью, стохастичностью поведения наших конкурентов. Что ж, прийдется иметь дело не с самими величинами (заказываемыми ценами, доходами и т. д.), а с их математическими ожиданиями, вычисленными по вероятностным моделям, или со средними значениями, найденными по итогам наблюдений или статистических экспериментов.

3.11 Методы анализа больших систем, планирование экспериментов

Еще в начале рассмотрения вопросов о целях и методах системного анализа мы обнаружили ситуации, в которых нет возможности описать элемент системы, подсистему и систему в целом аналитически, используя системы уравнений или хотя бы неравенств.

Иными словами — мы не всегда можем построить чисто математическую модель на любом уровне — элемента системы, подсистемы или системы в целом.

Такие системы иногда очень метко называют "плохо организованными" или "слабо структурированными".

Так уж сложилось, что в течение почти 200 лет после Ньютона в науке считалось незыблемым положение о возможности "чистого" или однофакторного эксперимента. Предполагалось, что для выяснения зависимости величины Y=f(X) даже при очевидной зависимости Y от целого ряда других переменных всегда можно стабилизировать все переменные, кроме X, и найти "личное" влияние X на Y.

Лишь сравнительно недавно (см. работы В. В. Налимова) плохо организованные или, как их еще называют — большие системы вполне "законно" стали считаться особой средой, в которой неизвестными являются не то что связи внутри системы, но и самые элементарные процессы.

Анализ таких систем (в первую очередь социальных, а значит и экономических) возможен при единственном, научно обоснованном подходе — признании скрытых, неизвестных нам причин и законов процессов. Часто такие причины называют латентными факторами, а особые свойства процессов — латентными признаками.

Обнаружилась и считается также общепризнанной возможность анализа таких систем с использованием двух, принципиально различных подходов или методов.