· Построение модели изучаемой системы
· Отыскание решения задачи с помощью модели
· Проверка решения с помощью модели
· Подстройка решения под внешние условия
· Осуществление решения
Остановимся вкратце на каждом из этих этапов. Будем выделять наиболее сложные в понимании этапы и пытаться усвоить методы их осуществления на конкретных примерах.
Но уже сейчас отметим, что в каждом конкретном случае этапы системного занимают различный “удельный вес” в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы — указать, где оканчивается данный этап и начинается очередной.
Уже упоминалось, что в постановке задачи системного анализа обязательно участие двух сторон: заказчика (ЛПР) и исполнителя данного системного проекта. При этом участие заказчика не ограничивается финансированием работы - от него требуется (для пользы дела) произвести анализ системы, которой он управляет, сформулированы цели и оговорены возможные варианты действий. Так, — в упомянутом ранее примере системы управления учебным процессом одной из причин тихой кончины ее была та, что одна из подсистем руководство Вузом практически не обладала свободой действий по отношению к подсистеме обучаемых.
Конечно же, на этом этапе должны быть установлены и зафиксированы понятия эффективности деятельности системы. При этом в соответствии с принципами системного подхода необходимо учесть максимальное число связей как между элементами системы, так и по отношению к внешней среде. Ясно, что исполнитель-разработчик не всегда может, да и не должен иметь профессиональные знания именно тех процессов, которые имеют место в системе или, по крайней мере, являются главными. С другой стороны совершенно обязательно наличие таких знаний у заказчика — руководителя или администратора системы. Заказчик должен знать что надо сделать, а исполнитель — специалист в области системного анализа — как это сделать.
Обращаясь к будущей вашей профессии можно понять, что вам надо научиться и тому и другому. Если вы окажетесь в роли администратора, то к профессиональным знаниям по учету и аудиту весьма уместно иметь знания в области системного анализа — грамотная постановка задачи, с учетом технологии решения на современном уровне будет гарантией успеха. Если же вы окажетесь в другой категории — разработчиков, то вам не обойтись без “технологических" знаний в области учета и аудита. Работа по системному анализу в экономических системах вряд ли окажется эффективной без специальных знаний в области экономики. Разумеется, наш курс затронет только одну сторону — как использовать системный подход в управлении экономикой.
Модель изучаемой системы в самом лаконичном виде можно представить в виде зависимости
E = f(X,Y) {3 - 1}
где:
E — некоторый количественный показатель эффективности системы в плане достижения цели ее существования T, будем называть его — критерий эффективности.
X — управляемые переменные системы — те, на которые мы можем воздействовать или управляющие воздействия;
Y — неуправляемые, внешние по отношению к системе воздействия; их иногда называют состояниями природы.
Заметим, прежде всего, что возможны ситуации, в которых нет никакой необходимости учитывать состояния природы. Так, например, решается стандартная задача размещения запасов нескольких видов продукции и при этом можем найти E вполне однозначно, если известны значения Xi и, кроме того, некоторая информация о свойствах анализируемой системы.
В таком случае принято говорить о принятии управляющих решений или о стратегии управления в условиях определенности.
Если же с воздействиями окружающей среды, с состояниями природы мы вынуждены считаться, то приходится управлять системой в условиях неопределенности или, еще хуже — при наличии противодействия. Рассмотрим первую, на непросвещенный взгляд — самую простую, ситуацию.
Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять продукцию клиентам равномерными партиями в количестве N =24000 единиц в год. Срыв поставок недопустим, так как штраф за это можно считать бесконечно большим.
Запускать в производство приходится сразу всю партию, таковы условия технологии. Стоимость хранения единицы продукции Cx=10 копеек в месяц, а стоимость запуска одной партии в производство (независимо от ее объема) составляет Cp =400 гривен.
Таким образом, запускать в год много партий явно невыгодно, но невыгодно и выпустить всего 2 партии в год — слишком велики затраты на хранение! Где же “золотая середина”, сколько партий в год лучше всего выпускать?
Будем строить модель такой системы. Обозначим через n размер партии и найдем количество партий за год — p = N / n
24000 / n.Получается, что интервал времени между партиями составляет
t = 12 / p (месяцев), а средний запас изделий на складе — n/2 штук.
Сколько же нам будет стоить выпуск партии в n штук за один раз?
Сосчитать нетрудно — 0.1 · 12 · n / 2 гривен на складские расходы в год и 400
p гривен за запуск партий по n штук изделий в каждой.В общем виде годовые затраты составляют
E = T n / 2 + N / n {3 - 2}
где T = 12 — полное время наблюдения в месяцах.
Перед нами типичная вариационная задача: найти такое n0, при котором сумма E достигает минимума.
Решение этой задачи найти совсем просто — надо взять производную по n и приравнять эту производную нулю. Это дает
n0 =
, {3 - 3}что для нашего примера составляет 4000 единиц в одной партии и соответствует интервалу выпуска партий величиной в 2 месяца.
Затраты при этом минимальны и определяются как
E0 =
, {3 - 4}что для нашего примера составляет 4800 гривен в год.
Сопоставим эту сумму с затратами при выпуске 2000 изделий в партии или выпуске партии один раз в месяц (в духе недобрых традиций социалистического планового хозяйства):
E1= 0.1·12·2000/2 + 400·24000/ 2000 = 6000 гривен в год.
Комментарии, как говорится, — излишни!
Конечно, так просто решать задачи выработки оптимальных стратегий удается далеко не всегда, даже если речь идет о детерминированных данных для описания жизни системы — ее модели. Существует целый класс задач системного анализа и соответствующих им моделей систем, где речь идет о необходимости минимизировать одну функции многих переменных следующего типа: