Смекни!
smekni.com

Экстремумы функций многих переменных (стр. 3 из 3)

Очень просто решается задача на условный экстремум и тогда, когда уравнение связи можно представить параметрическими уравнениями х=х(t), y=y(t). Подставляя выражения для х и у в данную функцию, снова приходим к задаче отыскания экстремума функции одной переменной.


Если уравнение связи имеет более сложный вид и нам не удается ни явно выразить одну переменную через другую, ни заменить его параметрическими уравнениями, то задача отыскания условного экстремума становится более трудной. Будем по-прежнему считать, что в выражении функции z= f(x, y) переменная j(x, y) = 0. Полная производная от функции z= f(x, y) равна:

Где производная y`, найдена по правилу дифференцирования неявной функции. В точках условного экстремума найденная полная производная должна ровняться нулю; это дает одно уравнение, связывающее х и у. Так как они должны удовлетворять еще и уравнению связи, то мы получаем систему двух уравнений с двумя неизвестными


Преобразуем эту систему к гораздо более удобной, записав первое уравнение в виде пропорции и введя новую вспомогательную неизвестную l:

(знак минус перед l поставлен для удобства). От этих равенств легко перейти к следующей системе:

f`x=(x,y)+lj`x(x,y)=0, f`y(x,y)+lj`y(x,y)=0 (*),

которая вместе с уравнением связи j(x, y) = 0 образует систему трех уравнений с неизвестными х, у и l.

Эти уравнения (*) легче всего запомнить при помощи следующего правила: для того, чтобы найти точки, которые могут быть точками условного экстремума функции

Z= f(x, y) при уравнении связи j(x, y) = 0, нужно образовать вспомогательную функцию

Ф(х,у)=f(x,y)+lj(x,y)

Где l-некоторая постоянная, и составить уравнения для отыскания точек экстремума этой функции.

Указаная система уравнений доставляет, как правило, только необходимые условия, т.е. не всякая пара значений х и у, удовлетворяющая этой системе, обязательно является точкой условного экстремума. Достаточные условия для точек условного экстремума я приводить не стану; очень часто конкретное содержание задачи само подсказывает, чем является найденная точка. Описанный прием решения задач на условный экстремум называется методом множителей Лагранжа.

Метод множителей Лагранжа имеет наглядный геометрический смысл, который я сейчас поясню.

Предположим, что на рис 4. Изображены линии уровня функции Z= f(x, y) и линия L, на которой отыскиваются точки условного экстремума.

Если в точке Q линия L пересекает линию уровня, то эта точка не может быть точкой условного экстремумат.к. по одну сторону от линии уровня функция Z= f(x, y) принимает большие значения, а по другую - меньшие. Если же в точке P линия L не пересекает соответствующую линию уровня и, значит, в некоторой окрестности этой точки лежит по одну сторону от линии уровня, то точка P будет как раз являться точкой

условного экстремума. В такой точке линия L и линия уровня Z= f(x, y) =С касаются друг друга (предполагается, что линии гладкие). И угловые коэффициенты касательных к ним должны быть равны. Из уравнения связи j(x, y) = 0 имеем

y`=-j`x/j`y, а из уравнения линии уровня y`=-fx`/fy`. Приравнивая производные и произведя простейшее преобразование мы получим уравнение


Приведенное рассуждение теряет силу, если линия уровня такова, что во всех ее точках fx`=0, fy`=0. Можно рассмотреть, например, функцию z = 4-x2 и линию уровня x=0, соответствующую значению z = 4.

Можно искать условный экстремум функции f(x,y,z) при двух уравнениях связи: j1(x, y, z) = 0 и j2(x, y, z) = 0

Эти уравнения определяют линию в пространстве. Таким образом задача сводится к отысканию такой точки линии, в которой функция принимает экстремальное значение, причем сравниваются значения функции только в точках рассматриваемой линии.

Метод множителей Лагранжа в этом случае принимается следующим образом: строим вспомогательную функцию


Ф(x, y, z) = f(x, y, z)+l1j1(x, y, z) +l2j2(x, y, z), где l1и l2- новые дополнительные неизвестные, и состовляем систему уравнений для отыскания экстремумов этой функции.


Добавляя сюда два уравнения связи получаем систему уравнений с пятью неизвестными x, y, z, l1, l2. Искомыми точками условного экстремума могут быть только те, координаты х, у, z которых являются решением этой системы.

Список использованной литературы:

А.Ф. Бермант, И.Г. Абрамович. Краткий курс математического анализа.

Шипачев Учебник высшей математики