Теорема о продолжении меры.
Построим минимальную s - алгебру, которой принадлежит поле событий F (например, борелевская s - алгебра - это минимальная s - алгебра, которая содержит поле всех полуинтервалов ненулевой длины).
Тогда доказывается, что счетно-аддитивная функция P(A) однозначно распространяется на все элементы минимальной s - алгебры и при этом ни одна из аксиом не нарушается.
Таким образом, продленное P(A) называется s - аддитивной мерой.
s - алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.
Но в аксиоматической теории вероятности считается, что может произойти любое событие из s - алгебры.
Расширение поля наблюдаемых событий на s - алгебру связано с невозможностью получить основные результаты теории вероятности без понятия s - алгебры.
Определение вероятностного пространства.
Вероятностным пространством называется тройка (W , s , P), где
W - пространство элементарных событий, построенное для данного испытания;
s - s -алгебра, заданная на W - системе возможных событий, которая интересует исследователя, в результате проводимых испытаний;
P - s - аддитивная мера, т.е. s - аддитивная неотрицательная функция, аргументами которой являются аргументы из s - алгебры и удовлетворяющая трем аксиомам теории вероятности.
. P(A) - называется вероятностью наступления события A.Вероятность достоверного события равна 1 P(W )=1.
Вероятность суммы несовместных событий равна сумме вероятностей
, .k - возможно бесконечное число.
Следствие:
Вероятность невозможного события равна 0.
По определению суммы имеет место неравенство W +V=W . W и V несовместные события.
По третей аксиоме теории вероятности имеем:
P(W +V)=P(Q)=P(U)=1
P(W )+P(V)=P(W )
1+P(V)=1
P(V)=1
Пусть W состоит из конечного числа элементарных событий W ={E1, E2,..., Em} тогда по определению
. Элементарные события несовместны, тогда по третей аксиоме теории вероятности имеет местоПусть некоторое событие AÌ W состоит из k элементарных событий, тогда {Ei1, Ei2,..., Eik}
Доказать: Если AÌ B, то P(B)³ P(A), B=A+C, A и C несовместны.
* Пусть B=A+C, A и B несовместны. Тогда по третей аксиоме теории вероятности P(B)=P(A+C)=P(A)+P(C) т.к. 1³ P(C)³ 0 - положительное число, то P(B)³ P(A).
Классическое определение вероятности.
Пусть W состоит из конечного числа элементарных событий и все элементарные события равновероятны, т.е. ни одному из них из них нельзя отдать предпочтения до испытания, следовательно, их можно считать равновероятными.
Тогда достоверное событие
m - количество равновероятных событий , ,Пусть произвольное событие
Тогда , т.е. событие A состоит из k элементарных событий.Если элементарные события являются равноправными, а, следовательно, и равновероятными, то вероятность наступления произвольного события равна дроби числитель которой равен числу элементарных событий, входящих в данное, а знаменатель - общее число элементарных событий.
Условная вероятность.
P(A/B)
Условной вероятностью наступления события A, при условии события B, называется вероятность наступления события A в результате испытаний, если известно, что в это испытании произошло событие B.
Вывод формулы условной вероятности для случая равновероятных элементарных событий
Действительно, в данном испытании произошло одно из t событий, входящих в B. Все элементарные события равновероятны, следовательно, для данного испытания вероятность наступления произвольного элементарного события, входящего в B равна 1/t. Тогда по классическому определению вероятности, в данном испытании событие A произойдет с вероятностью r/t.
В общем случае доказать эту формулировку невозможно, в теории вероятности она вводится как правило. Существует лишь толкование этой формулы.
Обоснование формулы условной вероятности в общем случае.
Пусть в nB испытаниях произошло событие B, а в nA испытаниях произошло событие A. Найдем условную частость наступления события A при условии, что произошло событие B. Мы можем сделать это для обоснования формулы, т.к. под вероятностью наступления события понимается предел частости наступления события при условии, что серия испытаний достаточно длинная.
Условная частость
Рассматривая AB как одно событие D имеем:
с другой стороныРассмотрим систему событий A1, A2,...,Ak. Покажем, что вероятность их совместного наступления равна:
Доказательство проведем по мат индукции.
Формула равна для 2 и 3 (см. ранее)
Пусть формула верна для k-1.
Введем событие B.
P(A1A2...Ak-1)=P(B)
P(A1A2...Ak)=P(AkB)=P(B)× P(AkB)
Независимые события.
Два события A и B называются независимыми, если P(A/B)=P(A); P(B)=P(B/A) - доказать.
В этом случае вероятность наступления двух событий A и B равна P(AB)=P(B)P(A/B)=P(A)P(B),
при этом покажем, что P(B/A)=P(B); P(AB)=P(B)P(A)=P(A)P(B/A)
События A1A2...Ak называются независимыми между собой, если вероятность их совместного наступления
; . Два независимых события совместны.* Если бы события были несовместны, то P(A/B)=0 и P(B/A)=0, т.к. они независимы, то P(A/B)=P(A) и P(B/A)=P(B), т.е. утверждение “независимые события несовместны”, т.к. P(A)=0 и P(B)=0, то это утверждение неверно.
Формула сложения вероятностей.
U - достоверное событие
Покажем, что события
несовместны.* Если события несовместны, то
; ;т.е. события несовместны.
Тогда по третей аксиоме теории вероятности
Справедливо следующее тождество на основании (1) и закона дистрибутивности
Показать самим, что все три множества попарно несовместны.
На основании первой и третей аксиомы теории вероятности получаем:
Имеет место тождество
, показать самим, что несовместныПо третей аксиоме:
Для экзамена доказать самим формулу суммы произвольного числа событий
Формула полной вероятности.
Рассмотрим систему A из k попарно несовместных событий.
B1, B2, ..., Bk
Пусть дано событие A, удовлетворяющее равенству A=B1A+B2A+...+BkA.
Показать, что события B1A, B2A, BkA попарно несовместны. BiABjA=BiBjAA=VAA=V
Найти вероятность наступления события A. Любое событие входящее в A, обязательно входит в некоторое, но одно Bi, т.к. B1, B2, ..., Bk образуют полную группу.
Т.к. B1, B2, ..., Bk несовместны, то по третей аксиоме теории вероятности имеем:
; т.е.