Смекни!
smekni.com

Теория вероятности и математическая статистика (стр. 7 из 10)

Вероятностные характеристики непрерывных случайных величин.

Пусть имеется случайная величина, являющаяся функцией от непрерывной случайной величины X.

Y=x (x)

Математическим ожиданием непрерывной случайной величены является число:

,
- плотность вероятности случайной величины.

Обоснование этой формулы.

Аппроксимируем непрерывную случайную величину Y случайной величены Y*, которая является дискретной. Пусть числовая ось - пространство элементарных событий случайной величены X, разобьем всю числовую ось на отрезки достаточно малой длины.

2n отрезков.

Если в результате испытания случайная величена X попала в отрезок с начальной вершиной xi, то случайная величена X* приняла значение x (xi) с точностью до бесконечно малой D x - длины i-го отрезка. Вероятность того, что Y* примет значение x (xi) с точностью до бесконечно малой более высокого порядка, чем D x, тем более точно Y* аппроксимирует Y.

Вероятность наступления x (xi) для Y* равна

, при
эта сумма переходит в
.

Тогда

.

Самим показать, что все свойства мат. ожидания для дискретной случайной величены сохраняются для непрерывной случайной величены.

Доказать, что

Доказать самим, что свойство 1 и 2 для производящей функции в дискретном случае справедливы и для непрерывного.

Распределение Гаусса - нормальное

Случайная величина имеет нормальное распределение (распределение Гаусса) и называется нормально распределенной, если ее плотность вероятности

Из определения

функция распределения

Найдем выражение для производящей функции нормального распределения

=1 (интеграл Эйлера)

Изобразим примерный вид плотности

Рассмотрим центрированную нормальную величину, т.е. MX=0

У центральной нормированной величины все нечетные начальные моменты равны 0

Функция Лапласа

Функцией Лапласа называется функция вида

Свойства:

1) при z>0 функция Лапласа определяет вероятность попадания нормальной случайной величины с параметрами

MX=0

DX=1

в интервале (0, z)

2)

3)

- функция нечетная

Иногда в литературе встречаются два вида функций Лапласа

Функция Лапласа табулирована. Функция Лапласа используется для выполнения событий вида

для произвольных нормальных величин.

Найдем вероятность того, что в результате испытания над x произойдет сложное событие: x примет числовое значение, принадлежащее отрезку с концами (a, b).

Пример.

x - случайная величина.

f(x) - плотность вероятности.

Найти плотность вероятности g(n) случайной величины H.

Рассмотрим отрезок (h, h+dh). Событию попадание H в отрезок (h, h+dh) в силу однозначности функции h(x) соответствует попадание x в отрезок (x, x+dx). При этом вероятности наступления такого события одинаковы:

Тогда построим функцию h(x), обратную x(h), x=x(h).

т.к.

Вероятность первого события равна

Вероятность второго события

Следовательно

Неравенство Чебышева

Рассмотрим случайную величину X с конечным мат. ожиданием и дисперсией

Для любого неотрицательного числа t вероятность наступления события

Пусть Z - непрерывная случайная величина с плотностью вероятности f(Z). Пространство событий величины Z (0; ¥). Тогда имеет место неравенство

Доказать неравенства

Рассмотрим два сложных события

a - произвольное действительное число.

Показать самим, что x - удовлетворяет и одному и другому неравенству.

Тогда

справедливо

В данном случае

Равномерность неравенств при e>0

или, в частности, при a=n=MX

при e=st справедливо неравенство Чебышева.

Многомерные случайные величины.

Инженерная интерпретация.

Проводится испытание. В результате испытания фиксируется m числовых значений X1, X2, ...,Xm. Исход испытания случайный.

Пример: Испытание - реализация некоторой технологии выпуска продукта. Исход - численное значение m характеристик, оценив которые мы оценим качество продукта.

Т.к. в процессе реализации технологии на технологию действуют случайные факторы, то результат испытания неоднозначен.

Аксиоматика. Формальная вероятностная модель.

Имеется вероятностное пространство: (W , s , P). Зададим m числовых измеримых скалярных функций x 1(w ), ..., x m(w ). Каждая из этих функций является одномерной по определению. Возьмем m произвольных действительных чисел и рассмотрим событие A.

Очевидно, что событие A является пересечением событий Ai вида:

Т.к. каждое AiÎ s -алгебре, то и AÌ s -алгебре. Следовательно, существует вероятность наступления события A и существует числовая скалярная функция m действительных аргументов, которая определена для всех значений своих аргументов и численно равна вероятности наступления события A.

F(x1, x2, ...,xm)=P(A)

Это m-мерная функция распределения m-мерной случайной величены.

Свойства многомерного распределения:

Значение функции при значении хотя бы одного ее аргумента равного -¥ , равно 0, как вероятность невозможного события.

Значение функции, при всех значениях ее аргументов равных +¥ , равно 1, как вероятность достоверного события.

Функция не убывает по любой совокупности ее аргументов.

Функция непрерывна почти всюду (для инженерной практики это означает, что на конечном, либо счетном множестве аргументов она может иметь скачки 1-го рода).

Рассмотрим арифметическое пространство

и зададим полуинтервалы вида:

Доказать самим, что P(B) существует, и образ этого множества принадлежит s -алгебре по w .

Можно доказать, что:

Т.о. многомерная функция распределения позволяет в m-мерном арифметическом пространстве задать счетно-аддитивную меру - функцию на поле, порожденному всеми m-мерными полуинтервалами объема (" i, ai¹ bi). Тогда построим минимальную s -алгебру на этом поле, которая называется борелевским полем (алгеброй) в m-мерном арифметическом пространстве. Любая скалярная функция m-аргументов удовлетворяет всем свойствам, приведенным для m-мерной функции распределения и однозначно задает вероятностное пространство вида: