Смекни!
smekni.com

Теория вероятности и математическая статистика (стр. 9 из 10)

Независимые непрерывные двумерные случайные величины.

Непрерывными случайными величинами с независимыми компонентами называются если:

Непрерывная двумерная случайная величина имеет независимые случайные компоненты, если

или

Покажем, что второе эквивалентно первому.

Покажем, что если двумерная непрерывная случайная величина XY порождена композицией независимых испытаний, то X и Y независимы.

В силу определения независимых испытаний в композиционном пространстве

В силу определения независимых испытаний в композиционном пространстве A и B независимы.

Следовательно:

Многомерные дискретные случайные величины

Это система, состоящая из m дискретных одномерных случайных величин. Всю арифметику проделать самостоятельно.

Многомерные непрерывные случайные величины.

Система из m одномерных непрерывных случайных величин, у которой пространством элементарных событий является m-мерное арифметическое пространство либо его область, имеющая ненулевой объем.

m-мерная плотность вероятности удовлетворяет выражению

m-мерной функцией распределения называется числовая скалярная функция m действительных аргументов, которая численно равна:

Случайные величины x1, x2, ... xm независимы, если

Доказать, что если m-мерная случайная величина порождена композицией m-мерных испытаний, то события независимы.

Запишем аналог формул

для многомерного случая.

Для получения плотности вероятности

необходимо n-мерную плотность проинтегрировать в бесконечных пределах по переменным, которые соответствуют случайным величинам, не входящим в

Найдем плотность n-мерной случайной величины.

Математическое ожидание скалярной функции случайных аргументов.

Двумерный дискретный случай.

XY

Числовая скалярная функция

является одномерной дискретной случайной величиной, со следующим отличием от обычного представления:

для того, чтобы в испытании получить реализацию

необходимо провести испытание над двумерной случайной величиной XY, зафиксировать ее результат xi,yi и подставить в
. Полученное число и есть реализация случайной величины
.

Таблица случайной величины строится по таблице

Двумерные непрерывные случайные величины

Случайную величину

аппроксимируем дискретной по следующему правилу:

пространство элементарных событий XY представим в виде совокупности прямоугольников с вершинами

, если в результате испытания XY попало в прямоугольник (i,j), то эта случайная величина приняла значение
. Вероятность наступления этого события равна:

точное значение мат. ожидания

n-мерный дискретный случай

- многомерная дискретная случайная величина

Найдем

Вероятностное пространство зададим в виде

Тогда

n-мерный непрерывный случай

Теорема 1. Математическое ожидание суммы случайных величин равно сумме математических ожиданий

а) дискретный случай

б) непрерывный случай

Пусть n-произвольное число

Теорема 2. Математическое ожидание произведения независимых случайных величин равно произведению мат.ожиданий.

По определению имеем

т.к. случайные величины X и Y независимы, то

Коэффициент ковариации

Коэффициентом ковариации называется выражение

Эта формула верна, т.к. верна следующая формула.

Пусть

тогда

Если случайные величины XY независимы, то их коэффициент ковариации равен нулю, обратное в общем случае неверно.

Пример.

X - случайная величина, имеющая нормальное распределение с нулевым мат.ожиданием

Y=X2 (Y и X связаны функционально).

Найдем

Случайная величина

называется нормированной случайной величиной, ее мат.ожидание равно 0, а дисперсия -1.

Коэффициентом корреляции случайных величин X и Y - это число

Следствие:

Если X и Y независимы, то коэффициент ковариации равен 0, то

Доказать, если

независимы, то

Свойства коэффициента корреляции

1.

По определению

т.к.

всегда неотрицательна, то

2. Если

, то с вероятность 1 X и Y связаны линейно.

Рассмотрим X*-Y*, отсюда M(X*-Y*)=0.

Если X и Y дискретные случайные величины, и дисперсия равна 0, то их сумма (разность) является постоянной

Пусть X и Y непрерывные случайные величины, то в соответствии с неравенством Чебышева

т.к.

Это неравенство и обозначает, что с вероятностью 1

откуда y=ax+b, где

Если коэффициент корреляции

, то результаты опыта лежат на прямой

В общем случае Y можно представить в виде

Коэффициент корреляции является мерой близости линейной связи между случайными величинами X и Y: чем ближе коэффициент корреляции по модулю к 1, тем более тесно результаты конкретного испытания над X и Y соотносятся с прямой ax+b.