Независимые непрерывные двумерные случайные величины.
Непрерывными случайными величинами с независимыми компонентами называются если:
Непрерывная двумерная случайная величина имеет независимые случайные компоненты, если
или
Покажем, что второе эквивалентно первому.
Покажем, что если двумерная непрерывная случайная величина XY порождена композицией независимых испытаний, то X и Y независимы.
В силу определения независимых испытаний в композиционном пространстве
В силу определения независимых испытаний в композиционном пространстве A и B независимы.
Следовательно:
Многомерные дискретные случайные величины
Это система, состоящая из m дискретных одномерных случайных величин. Всю арифметику проделать самостоятельно.
Многомерные непрерывные случайные величины.
Система из m одномерных непрерывных случайных величин, у которой пространством элементарных событий является m-мерное арифметическое пространство либо его область, имеющая ненулевой объем.
m-мерная плотность вероятности удовлетворяет выражению
m-мерной функцией распределения называется числовая скалярная функция m действительных аргументов, которая численно равна:
Случайные величины x1, x2, ... xm независимы, если
Доказать, что если m-мерная случайная величина порождена композицией m-мерных испытаний, то события независимы.
Запишем аналог формул
для многомерного случая.
Для получения плотности вероятности
необходимо n-мерную плотность проинтегрировать в бесконечных пределах по переменным, которые соответствуют случайным величинам, не входящим вНайдем плотность n-мерной случайной величины.
Математическое ожидание скалярной функции случайных аргументов.
Двумерный дискретный случай.
XY
Числовая скалярная функция
является одномерной дискретной случайной величиной, со следующим отличием от обычного представления:для того, чтобы в испытании получить реализацию
необходимо провести испытание над двумерной случайной величиной XY, зафиксировать ее результат xi,yi и подставить в . Полученное число и есть реализация случайной величины .Таблица случайной величины строится по таблице
Двумерные непрерывные случайные величины
Случайную величину
аппроксимируем дискретной по следующему правилу:пространство элементарных событий XY представим в виде совокупности прямоугольников с вершинами
, если в результате испытания XY попало в прямоугольник (i,j), то эта случайная величина приняла значение . Вероятность наступления этого события равна:точное значение мат. ожидания
n-мерный дискретный случай
- многомерная дискретная случайная величинаНайдем
Вероятностное пространство зададим в виде
Тогда
n-мерный непрерывный случай
Теорема 1. Математическое ожидание суммы случайных величин равно сумме математических ожиданий
а) дискретный случай
б) непрерывный случай
Пусть n-произвольное число
Теорема 2. Математическое ожидание произведения независимых случайных величин равно произведению мат.ожиданий.
По определению имеем
т.к. случайные величины X и Y независимы, тоКоэффициент ковариации
Коэффициентом ковариации называется выражение
Эта формула верна, т.к. верна следующая формула.
Пусть
тогда
Если случайные величины XY независимы, то их коэффициент ковариации равен нулю, обратное в общем случае неверно.
Пример.
X - случайная величина, имеющая нормальное распределение с нулевым мат.ожиданием
Y=X2 (Y и X связаны функционально).
Найдем
Случайная величина
называется нормированной случайной величиной, ее мат.ожидание равно 0, а дисперсия -1.Коэффициентом корреляции случайных величин X и Y - это число
Следствие:
Если X и Y независимы, то коэффициент ковариации равен 0, то
Доказать, если
независимы, тоСвойства коэффициента корреляции
1.
По определению
т.к.
всегда неотрицательна, то2. Если
, то с вероятность 1 X и Y связаны линейно.Рассмотрим X*-Y*, отсюда M(X*-Y*)=0.
Если X и Y дискретные случайные величины, и дисперсия равна 0, то их сумма (разность) является постоянной
Пусть X и Y непрерывные случайные величины, то в соответствии с неравенством Чебышева
т.к.
Это неравенство и обозначает, что с вероятностью 1
откуда y=ax+b, где
Если коэффициент корреляции
, то результаты опыта лежат на прямойВ общем случае Y можно представить в виде
Коэффициент корреляции является мерой близости линейной связи между случайными величинами X и Y: чем ближе коэффициент корреляции по модулю к 1, тем более тесно результаты конкретного испытания над X и Y соотносятся с прямой ax+b.