.
Реферат ученика 10 ф/м б класса Кожевникова Кирилла.
Февраль 2002 г.
С глубокой древности известны три задачи на построение: об удвоении куба, трисекции угла и квадратуре круга. Они сыграли особую роль в истории математики. В конце концов было доказано, что эти задачи невозможно решить, пользуясь только циркулем и линейкой. Но уже сама постановка задачи — «доказать неразрешимость» — была смелым шагом вперёд. Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре. Немало преуспели в нестандартных и различных приближённых решениях любители математики — среди них три знаменитые задачи древности особенно популярны. Задачи кажутся доступными любому: вводят в заблуждение их простые формулировки. До сих пор редакции математических журналов время от времени получают письма, авторы которых пытаются опровергнуть давно установленные истины и подробно излагают решение какой-либо из знаменитых задач с помощью циркуля и линейки.
КЛАССИЧЕСКИЕ ЗАДАЧИ ДРЕВНОСТИ
Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Однако три задачи не поддавались их усилиям. Прошли тысячелетия, и только в наше время, наконец, были получены их решения.
История нахождения квадратуры круга длилась четыре тысячелетия, а сам термин стал синонимом неразрешимых задач. Как следует из подобия кругов, отношение длины окружности к ее диаметру есть величина постоянная, не зависящая от радиуса круга, она обозначается буквой п. Таким образом, длина окружности круга радиуса rравна 2pr2, а так как площадь круга равна S = 2pr2, то задача о квадратуре круга сводится к задаче построения треугольника с основанием 2pr2 и высотой r. Для него потом уже без труда может быть построен равновеликий квадрат.
Итак, задача сводилась к построению отрезка, длина которого равна длине окружности данного круга. Это было показано еще Архимедом в сочинении «Измерение круга», где он доказывает, что число p меньше чем
т.е. 3,1408 < p < 3,1429.
В наши дни с помощью ЭВМ число p вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность никому не нужна. Десяти знаков числа p (p =3,141592653...) вполне достаточно для всех практических целей. Долгое время в качестве приближенного значения я использовали число 22/7, хотя уже в V в. в Китае было найдено приближение 355/113 == 3,1415929..., которое было открыто вновь в Европе лишь в XVI в. В Древней Индии p считали равным
Но все эти уточнения значения числа л производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон (рис. 1,а). Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника— больше. Но при этом оставалось неясным, является ли число p рациональным, т.е. отношением двух целых чисел, или иррациональным. Лишь в 1767 г. немецкий математик И. Г. Ламберт доказал, что число л иррационально, а еще через сто с лишним лет в 1882 г. другой немецкий математик— Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.
Конечно, способов приближенного решения квадратуры круга с помощью циркуля и линейки было придумано великое множество. Так, в Древнем Египте было распространено правило: площадь круга равна площади квадрата со стороной, равной 8/9; p =256/81 = =3,1604....
Были найдены и другие пути определения квадратуры круга: кроме циркуля и линейки использовали другие инструменты или специально построенные кривые. Так, в V в. до н.э. греческий математик Гиппий из Элиды изобрел кривую, впоследствии получившую название квадратрисы Динострата (ее назвали по имени другого древнегреческого математика, жившего несколько позже и указавшего способ построения квадратуры круга при помощи этой кривой).
Чрезвычайно любопытно, что квадратриса Динострата решает и вторую из знаменитых задач древности- задачу о трисекции угла. Для этого нужно отложить данный угол так, чтобы его вершина находилась в точкеО, а одна из сторон совпала с лучом ОА. Из точки N пересечения квадратрисы со вторым лучом угла опускаем перпендикуляр NК на ОА, а затем делим отрезок KА на три равные части. Если восставить , в точках деления перпендикуляры к прямой ;
ОА до пересечения с квадратрисой , а затем соединить полученные точки пересечения l с точкой О, то полученные углы окажутся равными. Это следует из метода построения квадратрисы. Аналогичным образом можно делить любой угол на произвольное количество равных частей.
Напомним, что в классической постановке задачи о трисекции угла такое построение требовалось произвести лишь с помощью циркуля и линейки! В 1837 г. французский математик П. Ванцель доказал, что в общем виде задача не имеет решения, а возможно такое деление лишь в нескольких исключительных случаях, в частности для угла а = p/2 и всех углов вида p/2n.
Решение задачи сводится к уравнению х3 - Зх - а = 0. Оказалось, что трисекция угла возможна для тех углов a, для которых корни этого уравнения выражаются через параметр а и целые числа лишь с помощью операций сложения, вычитания, умножения, деления и извлечения квадратного корня.
К кубическому уравнению сводится и знаменитая «делосская задача» удвоения куба. Свое название она получила от острова Делос в Эгейском море, где, по легенде, чтобы избавить жителей от эпидемии, оракул повелел удвоить алтарь, имевший форму куба. Но в действительности она, наверное, возникла в умах математиков как обобщение задачи об удвоении квадрата. Для того чтобы построить квадрат вдвое большей площади, чем данный, достаточно провести у данного квадрата диагональ (рис. 1д) и принять ее за сторону нового квадрата.
Задача об удвоении куба оказалась существенно более трудной. Если обозначить через а длину стороны исходного куба, а через х-длину стороны вдвое большего куба, то получим соотношение х3 = 2а3 -снова кубическое уравнение. В 1837 г. тот же П. Ванцель доказал, что невозможно построить с по мощью только циркуля и линейки отрезок, в 1/2 раз больший данного, т.е. подтвердил неразрешимость задачи удвоения куба.
Естественно, что существовали способы приближенного решения этой задачи и решения ее с помощью других инструментов и кривых. Так, уже в IV в. до н.э. древнегреческие математики умели находить корень уравнения x3 = 2a3 как абсциссу точки пересечения двух парабол х2 = aу и у2 = 2ах, а также других конических сечений.
На протяжении многих веков три знаменитые задачи древности привлекали внимание выдающихся математиков. В процессе их решения рождались и совершенствовались многие математические методы.
УДВОЕНИЕ КУБА
В этой задаче требуется построить циркулем и линейкой куб вдвое большего объёма, чем заданный. Ребро искомого куба равно а
Считают, что задача об удвоении куба появилась во времена пифагорейцев, около 540 г. до н. э. Возможно, она возникла из задачи об удвоении квадрата, которую легко решить, опираясь на теорему Пифагора, — надо построить квадрат на диагонали данного квадрата. Согласно легенде, жители Афин, на которых боги ниспослали эпидемию чумы, отправили делегацию к оракулу на остров Делос за советом, как задобрить богов и избавиться от морового поветрия. Ответ был таков:
«Удвойте жертвенник храма Аполлона, и чума прекратится». Жертвенник имел кубическую форму. Афиняне решили, что задание простое, и построили новый жертвенник, с вдвое большим ребром. Однако чума только усилилась. Вторично обратились к оракулу и получили ответ: «Получше изучайте геометрию». История умалчивает о том, как удалось умилостивить богов, но чума в конце концов покинула город. А задачу об удвоении куба стали называть делосской задачей.
Известна и другая легенда. Греческий комментатор VI в. до н. э. сообщает о письме, предположительно написанном царю Птолемею I. В нём говорится, что царь Минос построил на могиле сына надгробие кубической формы, но остался недоволен размерами памятника и приказал удвоить его, увеличив вдвое ребро куба. Комментатор указывает на ошибку царя Миноса (площадь поверхности памятника в результате увеличилась в четыре, а объём — в восемь раз) и рассказывает, что тогда геометры попытались решить эту задачу.
Но так и не сумев с ней справиться с помощью циркуля и линейки, греки попробовали применить другие инструменты, механизмы и даже специальные кривые. Гиппократ Хиосский, знаменитый геометр V в. до н. э., свёл удвоение куба к построению «двух средних пропорциональных» х и у для данных отрезков а и b, т. е. к решению уравнений