Смекни!
smekni.com

Марс (стр. 7 из 7)

Для выяснения путей эволюции атмосферы и древнего климата Марса очень важное значение имеют результаты масс-спектрометрических измерений в атмосфере планеты содержания малых примесей, в первую очередь инертных газов (см. табл. 2) и отношений основных изотопов. Путем сопоставления измеренных концентраций инертных газов с их абсолютным и относительным содержанием в земной атмосфере и газовой фракции метеоритов можно судить о степени их первичного фракционирования на стадии аккумуляции и происшедшей за геологическое время степени дегазации на планете. Анализ изотопного состава позволяет дополнительно выяснить степень дегазации и фракционирования летучих при диссипации газов из планетной атмосферы.

Результаты изотопного анализа и соотношений летучих (CO2/36Ar; N2/36Ar) на Марсе дают основание считать, что когда-то он действительно обладал более плотной атмосферой за счет приблизительно в 20 раз большего по отношению к существующему содержания углекислого газа и примерно от 10 до 100 раз большего содержания азота. Последняя оценка сделана на основании измеренного изотопного отношения азота (15N/14N), которое оказалось примерно на 75% выше, чем в атмосфере Земли, в то время как изотопные соотношения других распространенных составляющих – кислорода и углерода – сохраняются примерно аналогичными земным. Это приводит к важному выводу о том, что, хотя даже в самые благоприятные периоды атмосфера Марса оставалась по крайней мере вдесятеро менее плотной чем земная, такая атмосфера была способна создать заметный парниковый эффект и сохранить на поверхности жидкую воду.

Общее отогнанное количество воды на Марсе оценивается значением ~5*1021 г, что соответствует средней глубине равномерно разлитого на поверхности слоя около 20 м; это примерно на два порядка меньше, чем на Земле, но вместе с тем на порядок больше, чем на Венере. Можно ожидать, что почти вся эта масса отогнанной воды захоронена сейчас на Марсе в приповерхностных ледниках и полярных шапках, если исходить из предположения, что скорость диссипации атомов водорода на протяжении всей геологической истории планеты соответствовала современной величине потока (около 108 см-2-1). В этом случае количество потерянной воды, отнесенное к толщине эффективного слоя, не должно превысить 3-5 м.

Помимо адсорбирования на марсианском реголите и в напластованиях приполярных областей, одним из каналов эвакуации CO2 из атмосферы могли бы быть уже упоминавшиеся соединения включения – клатраты. Легко убедиться в том, что для оцененного выше количества H2O и CO2 молярное отношение для клатрата CO2nH2O соответствует n?4-5, что почти совпадает с нижним пределом для газовых гидратов при нормальном давлении.

Может возникнуть вполне естественный вопрос: только ли удаленность от Солнца повлияла на климат Марса и что случилось бы с ним, окажись он по своим размерам таким же, как Земля и Венера? Можно предполагать, что в этом случае Марс аккумулировал и удержал бы существенно большее количество летучих, а вследствие иного хода тепловой эволюции степень дифференциации слагающего вещества и дегазации была более полной. Такой Марс, очевидно, обладал бы значительно более плотной атмосферой и умеренным климатом.

Состав атмосферы Марса, включающий кислород, азот, углерод, близкая к арктическим и антарктическим районам Земли температура поверхности и обилие воды в ее верхних горизонтах, казалось бы, благоприятствуют оптимистическим надеждам обнаружить признаки жизни на этой планете. К сожалению, биологические эксперименты с марсианским грунтом на посадочных аппаратах “Викинг” оставили этот вопрос без ответа или скорее принесли больше отрицательных, чем положительных результатов. Видимо, в условиях эффективной естественной стерилизации за счет проникающей до поверхности коротковолнового ультрафиолетового излучения (с энергией фотонов до 6-7 эВ) и сильно окисленной среды в грунте, содержащем перекисные соединения (пероксиды), шансов обнаружить жизнь на Марсе мало.

Есть основания полагать, что ряд казавшихся позитивными свидетельств биологической активности в каждом из трех типов биологических экспериментов на “Викингах” – газовый обмен, разложение метки и ассимиляция углерода (в двух последних случаях с использованием меченых атомов углерода 14С) – объясняются процессами химического взаимодействия. В частности, интенсивное выделение кислорода в начальной фазе эксперимента по газовому обмену скорее всего связано с обилием в грунте пероксидов, а не с процессами метаболизма. Важным аргументом против наличия живых форм служит также чрезвычайно низкий порог обнаружения на поверхности и в приповерхностном слое органических молекул (~10-6 по массе по отношению к неорганическим). Вместе с тем вполне возможно, что отрицательный результат миссии “Викингов” был предопределен недостаточной чувствительностью использованных методов в столь неблагоприятных для жизни современных условиях на Марсе. Нельзя, конечно, исключить того, что эти условия могли быть значительно более благоприятными в ранней истории планеты или на определенных этапах ее климатической эволюции, когда на поверхности появлялась жидкая вода. Поэтому большой интерес представили бы попытки обнаружения простейших форм палеожизни в марсианском грунте, доступном непосредственным методам анализа в земных лабораториях.

Пока еще надежды найти признаки жизни на Марсе принципиально сохраняются, хотя вероятность ее существования там ничтожно мала. Если же в дальнейшем с этими надеждами придется окончательно расстаться, то это лишь с большей остротой поставит вопрос о том, почему жизнь возникла и интенсивно развивалась лишь на третьей от Солнца планете, - вопрос, имеющий не только естественнонаучное, но и громадное философское, мировоззренческое значение.

Список литературы

Маров М.Я. Планеты Солнечной системы.- М.: Наука, 1986. -320 с.

Томилин А. Небо Земли.

http://www.mars.sgi.com.