Смекни!
smekni.com

Методы решения уравнений, содержащих параметр (стр. 11 из 13)

Ответ.

или
.

Графический метод. Координатная плоскость (x;a)

Вообще, уравнения, содержащие параметр, не обеспечены какой-либо четкой, методически оформленной системой решения. Те или иные значения параметра приходится искать на ощупь, перебором, решая большое количество промежуточных уравнений. Такой подход далеко не всегда обеспечивает успех в отыскании всех значений параметра, при которых уравнение не имеет решений, имеет одно, два и более решений. Зачастую часть значений параметра теряются или появляются лишние значения. Для того чтобы эти последние, приходится проводить специальное исследование которое может оказаться довольно трудным.

Рассмотрим метод, упрощающий работу по решению уравнений с параметром. Метод состоит в следующем

Из уравнения с переменной x и параметра a выразим параметр как функцию от x:

.

В координатной плоскости xOa строим график функции

.

Рассмотрим прямые

и выделим те промежутки оси Oa, на которых эти прямые удовлетворяют следующим условиям: a) не пересекает график функции
, б) пересекает график функции
в одной точке, в) в двух точках, г) в трех точках и так далее.

Если поставлена задача найти значения x, то выражаем x через a для каждого из найденных промежутков значения a в отдельности.

Взгляд на параметр как на равноправную переменную находит свое отражение в графических методах. Таким образом, возникает координатная плоскость

. Казалось бы, такая незначительная деталь, как отказ от традиционного обозначения координатной плоскости буквами x и y определяет один из эффективнейших методов решения задач с параметрами.

Описанный метод очень нагляден. Кроме того, в нем находят применение почти все основные понятия курса алгебры и начал анализа. Задействуется весь набор знаний, связанных с исследованием функции: применение производной к определению точек экстремума, нахождение предела функции, асимптот и т. д. (см. [1], [5], [23]).

Пример. При каких значениях параметра
уравнение
имеет два корня?

Решение. Переходим к равносильной системе

Из графика видно, что при

уравнение имеет 2 корня.

Ответ. При
уравнение имеет два корня.

Пример. Найдите множество всех чисел

, для каждого из которых уравнение
имеет только два различных корня.

Решение. Перепишем данное уравнение в следующем виде:

Теперь важно не упустить, что

,
и
– корни исходного уравнения лишь при условии
. Обратим внимание на то, что график удобнее строить на координатной плоскости
. На рисунке 5 искомый график – объединение сплошных линий. Здесь ответ «считывается» вертикальными прямыми.

Ответ. При

, или
, или
.

Опытное преподавание

Программа факультативных занятий на тему «Методы решения уравнений, содержащих параметр».

Курс лучше изучать в 11 классе, так как уравнения такого вида содержат задания итоговой аттестации. Курс рассчитан на систематизацию методов решения уравнений, содержащих параметр и их классификацию. Все методы, рассмотренные в данной работе, рассматривать на факультативах не имеет смысла. Необходимо рассмотреть основные методы решения наиболее часто встречаемых на выпускных и вступительных экзаменах, а именно, методы решения квадратных уравнений, линейных, аналитический и графический методы и методы решения уравнений методом исследования области значения функции.

Цели факультатива:

познакомить учащихся с некоторыми методами решения уравнений, содержащих параметр;

показать применение различных методов при решении уравнений одного типа;

формировать умение видеть рациональный метод для решения конкретных типов уравнений, содержащих параметр;

формировать логическое мышление;

формировать настойчивость, целеустремленность, трудолюбие через решение сложных задач;

развивать математическую речь с присущей ей краткостью, точностью и лаконичностью;

подготовить учащихся к поступлению в ВУЗы.

Планирование:

Данный курс рассчитан на 16 часов. Занятия проводятся по два часа. В эти часы не входит время, предоставленное для проверки знаний и умений и повторения.

Краткое содержание занятий

Занятие № 1.

Тема: Параметр и решение линейных уравнений и простейших квадратных уравнений с параметром.

Оно проведено и рассмотрено в опытном преподавании.

Занятие № 2.

Тема: Квадратные уравнения. Дискриминант. Старший коэффициент.

Цель занятия: познакомить учеников с методом исследования дискриминанта и старшего коэффициента квадратных уравнений, содержащих параметр.

Литература для учителя: см. [1],[6],[18],[21],[22].

Литература для ученика: см. [21], [22]

Краткое содержание: относительно знака дискриминанта и старшего коэффициента определить количество корней и найти их, определить при каких значениях параметра функция касается осей координат. Использование таблицы № 1 (стр.38) при решении уравнений.

Занятие № 3.

Тема: Квадратные уравнения. Расположение корней.

Цель занятия: научить находить место расположение корней уравнения относительно некоторой точки или двух точек.

Литература для учителя: см. [1],[6],[18],[21],[22].

Литература для ученика: см. [21], [22]

Краткое содержание: используются теорема Виета (корни уравнения

удовлетворяют системе
) и вершина параболы, для определения расположения корней относительно некоторых точек координатной оси.

Занятие № 4.

Тема: Аналитический метод. Метод «ветвлений».

Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр.

Литература для учителя: см. [1] , [5], [6], [7], [14]

Литература для ученика: см. [3]

Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению многочленов или выделение полного квадрата. Составление системы логических следований, при которых используется один из выше приведенных способов упрощения уравнения.

Занятие № 5.

Тема: Аналитический метод. Параметр как равноправная переменная.

Цель занятия: показать ученикам, что уравнения, содержащие параметр, можно решать не только относительно переменной, но и относительно параметра.

Литература для учителя: см. [1] , [5], [6], [7], [14]

Литература для ученика: см. [3]

Краткое содержание: решение уравнений относительно параметра. Решение уравнений, не содержащих параметра, но использование методов решения уравнений, содержащих параметр. Например: решения уравнения четвертой степени не относительно переменной, а относительно числа (п.4.1.4).

Занятие № 6.

Тема: Метод исследования области значения функции.

Цель занятия: научить учеников использовать область значения функции.

Литература для учителя: см. [1] , [15]

Литература для ученика: см. [15]

Краткое содержание: если необходимо найти, при каких значениях переменной две функции равны, а пересечение их областей значений есть одно значение, то обе функции можно приравнять к этому значению и найти значение переменной (

и
, а
, то уравнение равносильно системе
).

Ученики при изучении области значения зачастую не понимают ее практического значения. Это занятие покажет им, как можно использовать данное свойство функций.