Обобщая знания, полученные при изучении третьей главы «Тригонометрические уравнения и неравенства», предложено тригонометрическое уравнение четвертой степени с параметром, классифицированное как задача повышенной трудности.
При повторении курса алгебры и начала анализа 10 класса в системе задач не встречается заданий с параметром и можно утверждать, что в системе изучения этого курса авторы не уделяют внимания к параметру как таковому.
При изучении производной авторы предлагают четыре упражнения с параметром (№№ 544-547), где дана функция, зависящая как от неизвестной, так и от параметра и нужно найти значения параметра, если производная имеет определенный знак или равна нулю.
При изучении же темы «Применение производной к исследованию функций» система задач содержит всего одно задание с параметром (№559).
Аналогично, в системе задач темы «Интеграл» предложена всего одна задача с параметром (№ 670), где нужно найти площадь фигуры, ограниченной параболой, где заключен параметр, и прямой.
При повторении курса алгебры и начала анализа 11 класса предложена одна задача с параметром (№718). В системе задач при итоговом повторении всего курса алгебры содержатся задачи с параметром, аналогичные всем рассмотренным ранее (в предыдущих учебниках и данном). Такими являются: №№ 781, 782 – это при повторении решения уравнений; №№ 828-830 – при повторении решения неравенств.
Выводы: Главным плюсом этого учебника является то, что предложены примерные виды заданий, предлагавшиеся на вступительных экзаменах в вузы. Одними из таких заданий являются задачи с параметром (№№ 974-976).
В отличие от учебника Мордковича система задач с параметрами предложена только для углубленного изучения и повторения пройденного материала (см. [27]).
Проведенный анализ позволяет сделать следующие выводы:
в каждом проанализированном учебнике задания, содержащие параметр, используется для проверки знаний и умений, приобретенных во время изучения той или иной темы. Предлагаются задания творческого характера, требующие от учащихся применения полученных знаний и умений в нестандартных условиях;
ни в одном из рассмотренных учебников не даётся чёткого определения параметра;
во всех учебниках задания однотипны;
Основные виды уравнений, содержащих параметр
Линейные и квадратные уравнения, содержащие параметр
Линейные и квадратные уравнения, содержащие параметр, можно объединить в одну группу – группу уравнений с параметром не выше второй степени.
Уравнения с параметром не выше второй степени являются самыми распространенными в практике итоговых и конкурсных заданий. Их общий вид определяется многочленом
. Для таких уравнений всякое частное уравнение не выше второй степени принадлежит одному из следующих типов: , тогда , и , тогда решений нет, и , тогда , , , тогда , , , тогда решений нет, , , тогда .Контрольные значения параметра определяются уравнением
. На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из двух последних типов.Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:
На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.
На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду
.Выделяют множество контрольных значений параметра, для которых
.Если уравнение
имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно. Проводится классификация частных уравнений по первым трем типам.На бесконечном множестве решений уравнения
проводится решение уравнения , выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых и , соответствует третий тип не особых частных уравнений.Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень
.Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.
Множеству значений параметра, для которых
и , соответствует тип не особых частных уравнений, не имеющих решений, для значений параметра из множества, где и , частные уравнения имеют два различных действительных корня (см. [1],[7]).Пример. Решить уравнение
2а∙(а-2)∙х = а-2. (2)
Решение. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются, а=0 и а=2. При этих значениях параметра а, невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0 и а≠2 деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества
A1={0}, А2={2} и А3= {а≠0, а≠2}
и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а=0; 2) а=2; 3) а≠0, а≠2.
Рассмотрим эти случаи.
1) При а=0 уравнение (2) принимает вид 0∙х=2. Это уравнение не имеет корней.
2) При а=2 уравнение (2) принимает вид 0∙х=0. Корнем этого уравнения является любое действительное число.
3) При а≠0, а≠2 уравнение соответствует третьему типу откуда х =
= .0твет: 1) если а=0, то корней нет;
2) если а=2, то х — любое действительное число;
3) если а≠0, а≠2 , то х =
.Пример. Решить уравнение
(а — 1)∙ х2+2∙ (2а+1)∙ х + (4а+3) =0. (3)
Решение. В данном случае контрольным значением параметра a является единица. Дело в том, что при a=1 уравнение (3) является линейным, а при а≠1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) a=1; 2) а≠1.
Рассмотрим эти случаи.
1) При a=1 уравнение (3) примет вид 6х+7=0. Из этого уравнения находим х = –
.2) Из множества значений параметра а≠1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.
Дело в том, что если дискриминант D=0 при а=ао, то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D < 0, а при а>ао D > 0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D < 0, а при а>ао D > 0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.