Представим уравнение системы в виде квадратного уравнения относительно числа 5.
Откуда, учитывая
, получаемОтвет.
.Методы поиска необходимых условий. Использование симметрии аналитических выражений
В тех случаях, когда непосредственный поиск значений переменной затруднен, можно сначала выделить необходимые условия, а затем от необходимых условий перейти к достаточным условиям.
Будем называть задачи, решаемые таким методом, задачами с поиском необходимых условий.
Необходимые условия задач этого пункта:
В каждой задаче обязательно фигурирует аналитическое выражение, геометрический образ которого имеет ось или плоскость симметрии.
Во всех задачах в той или иной форме присутствует требование единственности решения.
Если описываемые задачи имеют решением координаты точки М, то найдется симметричная точка М1, координаты которой тоже являются решением, тогда точка М должна лежать (в силу единственности решения) на оси симметрии, но заметим, что это требование не является достаточным.
Высказанные соображения и составляют основу одного из метода поиска необходимых условий, о котором будет идти речь в следующих задачах (см. [1], [5], [12]).
Пример. При каких
уравнение имеет одно решение.Решение. При замене
на (и наоборот) уравнение не меняет смысла, поэтому если точка с координатами – решение то и – решение. А так как в условии необходимо единственность решения, то .Тогда
. Так как , то , что возможно только для случая равенства и при . Тогда получаем . Откуда находим два корня уравнения, а в силу единственности, дискриминант приравниваем к нулю и получаем .Ответ. При
уравнение имеет одно решение.«Каркас» квадратичной функции. Дискриминант, старший коэффициент.
Фактически все важные свойства квадратичной функции определяются таблицей. Где
– конструируют «каркас», на котором строится теория квадратичной функции (см. [1], [2], [5], [7], [8], [18], [21], [22]) |
|