Выпускная квалификационная работа
Выполнил тудент V курса математического факультета Кузнецов Е.М.
Вятский государственный гуманитарный университет
Киров 2005
Изучение многих физических процессов и геометрических закономерностей часто приводит к решению уравнений, содержащих параметр. Решение задач с параметрами вызывает большие трудности у учащихся, так как их изучение не является отдельной составляющей школьного курса математики, и рассматривается только на немногочисленных факультативных занятиях.
Трудности при изучении данного вида уравнений связаны со следующими их особенностями:
Обилие формул и методов, используемых при решении уравнений данного вида;
Возможность решения одного и того же уравнения, содержащего параметр различными методами;
Выше изложенное обусловило проблему исследования, которая заключается в исследовании целесообразности и возможности изучения методов решения уравнений, содержащих параметры, в старших классах средней школы и в разработке соответствующей методики. Решение этой проблемы составило цель исследования.
Объектом исследования является процесс обучения алгебре в 7-9 классах и алгебре и началам анализа в 10-11 классах.
Предметом исследования являются классы уравнений, содержащих параметры, и их методы решения.
Гипотеза исследования: применение разработанной на основе общих методов решения уравнений, содержащих параметры, методики их решения позволит учащимся решать уравнения, содержащие параметры, на сознательной основе, выбирать наиболее рациональный метод решения, применять разные методы решения.
Проблема, предмет, гипотеза исследования обусловили следующие задачи:
проанализировать действующие учебники алгебры и начала анализа для выявления в них использования понятия «параметра» и методов решения уравнений, содержащих параметр;
выделить классы уравнений, содержащих параметры, и их методы решения;
разработать программу факультативных занятий на тему «Методы решения уравнений, содержащих параметр»;
осуществить опытное преподавание.
Теоретические основы решения уравнений, содержащих параметр
Рассмотрим уравнение
(F)с неизвестными х, у, ..., z и с параметрами
. При всякой допустимой системе значений параметров α0, β0, ..., γ0 уравнение (F) обращается в уравнение (F0)с неизвестными х, у,..., z, не содержащих параметров. Уравнение (F0) имеет некоторое вполне определенное множество (быть, может, пустое) решений.
Аналогично рассматриваются неравенства и системы, содержащие параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.
Определение. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения.
Понятие эквивалентности применительно к уравнениям, содержащие параметр, устанавливается следующим образом.
Определение. Два уравнения
F(х, у, ..., z;
) =0 (F),Ф (х, у, ..., z;
) =0 (Ф)с неизвестным х, у,..., z и с параметрами
называются эквивалентными, если для обоих уравнений множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения эквивалентны.Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.
Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.
Предположим, что каждое из неизвестных, содержащихся в уравнении
F(x, у, z;
)=0 (F)задано в виде некоторой функции от параметров:
х = х(
);у = у(
);z = z(
). (Х)Говорят, что система функций (Х), заданных совместно, удовлетворяет уравнению (F), если при подстановке этих функций вместо неизвестных х, у,..., z в уравнение (F) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:
F (x(
), y( ),…,z ( ))≡0.При всякой допустимой системе численных значений параметров
= α0, , ..., соответствующие значения функций (Х) образуют решение уравнения [1].Анализ школьных учебников по алгебре и началам анализа
Проанализируем действующие учебники курса алгебры и начала анализа, чтобы выяснить, насколько в них представлены задания, использующие понятие «параметр», и методы решения уравнений, содержащих параметр.
Макарычев Ю.Н. и др. «Алгебра. 7 - 9 класс»
Алгебра. 7 класс.
При изучении уравнений представлено два задания с параметром (№№236, 243). Рассматриваются простейшие линейные уравнения, но коэффициент при х является параметром и необходимо исследовать на количество корней или принадлежность корня к целым числам.
Также в данном учебнике в §5 «Линейная функция» (глава 2 «Функции») рассматривается прямая пропорциональность, где, не вводя понятие параметр, его используют. А именно, выясняется расположение графика функции
в зависимости от коэффициента , который и является параметром.Следующие задания с параметром предлагаются уже только в дополнительных заданиях к главе «Системы линейных уравнений» (№№1214-1216), где необходимо найти значение параметра, если известна точка пересечения графиков (см. [28]).
Алгебра 8 класс.
При изучении темы «Квадратные уравнения» в разделе дополнительных упражнений для более углубленного повторения материала предлагаются уравнения, содержащие параметр (№№ 645, 646, 660, 663-672), где необходимо найти значение переменной (параметра), если известен корень уравнения или какое-то соотношение корней. Можно выделить два номера (№№ 661, 662), где необходимо найти значение параметра, если известны знаки корней уравнения.
При изучении остальных тем учебника 8 класса параметр не использовался.
Алгебра. 9 класс.
Использование параметра ведется в главе «Квадратичная функция». При формулировании свойств функции
в зависимости от коэффициента , и предлагается для решения задача на нахождение нулей функции, которая зависит от параметра. В разделе «дополнительные задачи» приводятся задания с параметром на исследование:области значений;
расположения графика относительно прямой;
вершины параболы; нулей функции;
принадлежность данных точек функции, содержащей два параметра.
При рассмотрении графиков функций
и строятся предпосылки для решения уравнений, содержащих параметр, графическим методом (параллельный перенос).При изучении систем уравнений предлагаются дополнительные задачи с параметром на исследование количества решений системы.
В системе упражнений для повторения курса VII-IX классов заданий, содержащих параметр, не представлено (см. [29]).
Мордкович. А. Г. «Алгебра 7 по 9 класс» и «Алгебра и начала анализа 10 – 11 класс»
Надо отметить, что данное учебное пособие состоит из двух частей: из учебника и задачника (см. [30], [31]).
При изучении линейной функции (7 класс глава 6 §28) рассматривается линейное уравнение с двумя переменными и его график, где учащихся знакомят с параметром в неявном виде, то есть при рассмотрении нахождения корня линейного уравнения с одной неизвестной
ставится ограничение на переменную a (a 0). При изучении параметра, такие значения переменной и будем называть особыми, для которых будут соответствовать частные решения.Задачи:
Номера 828-831 задачника содержат задания, в которых требуется нахождение коэффициента уравнения если известно решение уравнения, то есть говорится о том, чтобы найти значения параметра, если известно решение уравнения. В номерах 902-903 необходимо найти значения переменной, если известно, что график функции проходит через данную точку. Эти номера подготавливают ученика к методу «ветвлений» решения уравнений с параметром, о котором расскажем позднее в пункте 4.1.1.